Cargando…
Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions
Oxygen depleted hypoxic regions in the tumour are generally resistant to therapies(1). Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour(2) of magnetotactic bacteria(3), Magnetococcus marinus...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6094936/ https://www.ncbi.nlm.nih.gov/pubmed/27525475 http://dx.doi.org/10.1038/nnano.2016.137 |
_version_ | 1783347892088471552 |
---|---|
author | Felfoul, Ouajdi Mohammadi, Mahmood Taherkhani, Samira de Lanauze, Dominic Xu, Yong Zhong Loghin, Dumitru Essa, Sherief Jancik, Sylwia Houle, Daniel Lafleur, Michel Gaboury, Louis Tabrizian, Maryam Kaou, Neila Atkin, Michael Vuong, Té Batist, Gerald Beauchemin, Nicole Radzioch, Danuta Martel, Sylvain |
author_facet | Felfoul, Ouajdi Mohammadi, Mahmood Taherkhani, Samira de Lanauze, Dominic Xu, Yong Zhong Loghin, Dumitru Essa, Sherief Jancik, Sylwia Houle, Daniel Lafleur, Michel Gaboury, Louis Tabrizian, Maryam Kaou, Neila Atkin, Michael Vuong, Té Batist, Gerald Beauchemin, Nicole Radzioch, Danuta Martel, Sylvain |
author_sort | Felfoul, Ouajdi |
collection | PubMed |
description | Oxygen depleted hypoxic regions in the tumour are generally resistant to therapies(1). Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour(2) of magnetotactic bacteria(3), Magnetococcus marinus strain MC-1(4), can be used to transport drug-loaded nanoliposomes into hypoxic regions of the tumour. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals(5), tend to swim along local magnetic field lines and towards low oxygen concentrations(6) based on a two-state aerotactic sensing system(2). We show that when MC-1 cells bearing covalently bound drug-containing nanoliposomes were injected near the tumour in SCID Beige mice and magnetically guided, up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell. Our results suggest that harnessing swarms of microorganisms exhibiting magneto-aerotactic behaviour can significantly improve the therapeutic index of various nanocarriers in tumour hypoxic regions. |
format | Online Article Text |
id | pubmed-6094936 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-60949362018-08-16 Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions Felfoul, Ouajdi Mohammadi, Mahmood Taherkhani, Samira de Lanauze, Dominic Xu, Yong Zhong Loghin, Dumitru Essa, Sherief Jancik, Sylwia Houle, Daniel Lafleur, Michel Gaboury, Louis Tabrizian, Maryam Kaou, Neila Atkin, Michael Vuong, Té Batist, Gerald Beauchemin, Nicole Radzioch, Danuta Martel, Sylvain Nat Nanotechnol Article Oxygen depleted hypoxic regions in the tumour are generally resistant to therapies(1). Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour(2) of magnetotactic bacteria(3), Magnetococcus marinus strain MC-1(4), can be used to transport drug-loaded nanoliposomes into hypoxic regions of the tumour. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals(5), tend to swim along local magnetic field lines and towards low oxygen concentrations(6) based on a two-state aerotactic sensing system(2). We show that when MC-1 cells bearing covalently bound drug-containing nanoliposomes were injected near the tumour in SCID Beige mice and magnetically guided, up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell. Our results suggest that harnessing swarms of microorganisms exhibiting magneto-aerotactic behaviour can significantly improve the therapeutic index of various nanocarriers in tumour hypoxic regions. 2016-08-15 2016-11 /pmc/articles/PMC6094936/ /pubmed/27525475 http://dx.doi.org/10.1038/nnano.2016.137 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Reprints and permissions information is available online at www.nature.com/reprintsandpermissions/ (http://www.nature.com/reprintsandpermissions/) . |
spellingShingle | Article Felfoul, Ouajdi Mohammadi, Mahmood Taherkhani, Samira de Lanauze, Dominic Xu, Yong Zhong Loghin, Dumitru Essa, Sherief Jancik, Sylwia Houle, Daniel Lafleur, Michel Gaboury, Louis Tabrizian, Maryam Kaou, Neila Atkin, Michael Vuong, Té Batist, Gerald Beauchemin, Nicole Radzioch, Danuta Martel, Sylvain Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions |
title | Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions |
title_full | Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions |
title_fullStr | Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions |
title_full_unstemmed | Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions |
title_short | Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions |
title_sort | magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6094936/ https://www.ncbi.nlm.nih.gov/pubmed/27525475 http://dx.doi.org/10.1038/nnano.2016.137 |
work_keys_str_mv | AT felfoulouajdi magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT mohammadimahmood magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT taherkhanisamira magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT delanauzedominic magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT xuyongzhong magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT loghindumitru magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT essasherief magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT janciksylwia magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT houledaniel magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT lafleurmichel magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT gabourylouis magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT tabrizianmaryam magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT kaouneila magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT atkinmichael magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT vuongte magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT batistgerald magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT beaucheminnicole magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT radziochdanuta magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions AT martelsylvain magnetoaerotacticbacteriadeliverdrugcontainingnanoliposomestotumourhypoxicregions |