Cargando…
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers
PURPOSE: Machine learning classification algorithms (classifiers) for prediction of treatment response are becoming more popular in radiotherapy literature. General Machine learning literature provides evidence in favor of some classifier families (random forest, support vector machine, gradient boo...
Autores principales: | Deist, Timo M., Dankers, Frank J. W. M., Valdes, Gilmer, Wijsman, Robin, Hsu, I‐Chow, Oberije, Cary, Lustberg, Tim, van Soest, Johan, Hoebers, Frank, Jochems, Arthur, El Naqa, Issam, Wee, Leonard, Morin, Olivier, Raleigh, David R., Bots, Wouter, Kaanders, Johannes H., Belderbos, José, Kwint, Margriet, Solberg, Timothy, Monshouwer, René, Bussink, Johan, Dekker, Andre, Lambin, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095141/ https://www.ncbi.nlm.nih.gov/pubmed/29763967 http://dx.doi.org/10.1002/mp.12967 |
Ejemplares similares
-
Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries
por: Jochems, Arthur, et al.
Publicado: (2017) -
Big Data in radiation therapy: challenges and opportunities
por: Lustberg, Tim, et al.
Publicado: (2017) -
Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT
por: Deist, Timo M., et al.
Publicado: (2017) -
Distributed radiomics as a signature validation study using the Personal Health Train infrastructure
por: Shi, Zhenwei, et al.
Publicado: (2019) -
Use of F2 Bulks in Training Sets for Genomic Prediction of Combining Ability and Hybrid Performance
por: Technow, Frank
Publicado: (2019)