Cargando…
The blessing of Dimensionality: Feature Selection outperforms functional connectivity-based feature transformation to classify ADHD subjects from EEG patterns of phase synchronisation
Functional connectivity (FC) characterizes brain activity from a multivariate set of N brain signals by means of an NxN matrix A, whose elements estimate the dependence within each possible pair of signals. Such matrix can be used as a feature vector for (un)supervised subject classification. Yet if...
Autores principales: | Pereda, Ernesto, García-Torres, Miguel, Melián-Batista, Belén, Mañas, Soledad, Méndez, Leopoldo, González, Julián J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095525/ https://www.ncbi.nlm.nih.gov/pubmed/30114248 http://dx.doi.org/10.1371/journal.pone.0201660 |
Ejemplares similares
-
Evolutionary optimization of classifiers and features for single-trial EEG Discrimination
por: Åberg, Malin CB, et al.
Publicado: (2007) -
Current composite-feature classification methods do not outperform simple single-genes classifiers in breast cancer prognosis
por: Staiger, Christine, et al.
Publicado: (2013) -
Electroencephalography signatures of attention-deficit/hyperactivity disorder: clinical utility
por: Alba, Guzmán, et al.
Publicado: (2015) -
EEG in the classroom: Synchronised neural recordings during video presentation
por: Poulsen, Andreas Trier, et al.
Publicado: (2017) -
The blessing
por: Mitford, Nancy, 1904-1973