Cargando…
The VP1 unique region of human parvovirus B19 and human bocavirus induce lung injury in naïve Balb/c mice
Both human parvovirus B19 (B19V) and human bocavirus (HBoV) are known to be important human pathogens of the Parvoviridae family. Our earlier investigation demonstrated that both B19V-VP1u and HBoV-VP1u have a significantly disruptive effect on tight junctions (TJs) in A549 cells, implying the essen...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095614/ https://www.ncbi.nlm.nih.gov/pubmed/30114253 http://dx.doi.org/10.1371/journal.pone.0202667 |
Sumario: | Both human parvovirus B19 (B19V) and human bocavirus (HBoV) are known to be important human pathogens of the Parvoviridae family. Our earlier investigation demonstrated that both B19V-VP1u and HBoV-VP1u have a significantly disruptive effect on tight junctions (TJs) in A549 cells, implying the essential role of parvovirus in airway infection and lung injury. However, no direct evidence that B19V-VP1u and HBoV-VP1u induce lung injury exists. The present study further investigates the induction of lung injury by B19V-VP1u and HBoV-VP1u in naïve Balb/c mice following subcutaneous injection of PBS, recombinant B19V-VP1u or HBoV-VP1u. The experimental results reveal significantly increased activity, protein expression and ratio of matrix metalloproteinase-9 (MMP-9) to MMP-2 in Balb/c mice that received B19V-VP1u or HBoV-VP1u compared to those that received PBS. Significantly higher levels of inflammatory cytokines, including IL-6 and IL-1β, and greater lymphocyte infiltration in lung tissue sections were detected in mice that received B19V-VP1u or HBoV-VP1u. Additionally, significantly increased levels of phosphorylated p65 (NF-κB) and MAPK signaling proteins were observed in lung tissue of mice that received B19V-VP1u or HBoV-VP1u compared to those of mice that received PBS. These findings demonstrate for the first time that B19V-VP1u and HBoV-VP1u proteins induce lung inflammatory reactions through p65 (NF-κB) and MAPK signaling. |
---|