Cargando…
Chronic Administration of Pimozide Fails to Attenuate Motor and Pathological Deficits in Two Mouse Models of Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which presently does not have any efficient therapeutic approach. Pimozide, a Food and Drug Administration (FDA)-approved neuroepileptic drug, has been recently proposed as a promising treatment for ALS patients based on appare...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095790/ https://www.ncbi.nlm.nih.gov/pubmed/29790082 http://dx.doi.org/10.1007/s13311-018-0634-3 |
_version_ | 1783347989092237312 |
---|---|
author | Pozzi, Silvia Thammisetty, Sai Sampath Julien, Jean-Pierre |
author_facet | Pozzi, Silvia Thammisetty, Sai Sampath Julien, Jean-Pierre |
author_sort | Pozzi, Silvia |
collection | PubMed |
description | Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which presently does not have any efficient therapeutic approach. Pimozide, a Food and Drug Administration (FDA)-approved neuroepileptic drug, has been recently proposed as a promising treatment for ALS patients based on apparent stabilization of right hand muscles after a short-time administration. A new clinical trial started at the end of 2017 to recruit patients with a prolonged drug delivery schedule. Here, our aim was to investigate the effects of chronic administration of pimozide on disease progression and pathological events in two mouse models of ALS. Pimozide was administered every 2 days to transgenic mice bearing the ALS-linked A315T mutation on the human TAR DNA-binding protein 43 (TDP-43) gene and to mice carrying the human superoxide dismutase 1 (SOD1) gene with the ALS-linked G93A mutation. Chronic administration of pimozide exacerbated motor performances in both animal models and reduced survival in SOD1(G93A) mice. In TDP-43(A315)T, it decreased the percentage of innervated neuromuscular junctions (NMJs) and increased the accumulation of insoluble TDP-43. In SOD1(G93A) mice, pimozide had no effects on NMJ innervation or motoneuron loss, but it increased the levels of misfolded SOD1. We conclude that a chronic administration of pimozide did not confer beneficial effects on disease progression in two mouse models of ALS. In light of a new clinical trial on ALS patients with a chronic regime of pimozide, these results with mouse models suggest prudence and careful monitoring of ALS patients subjected to pimozide treatment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s13311-018-0634-3) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6095790 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-60957902018-08-24 Chronic Administration of Pimozide Fails to Attenuate Motor and Pathological Deficits in Two Mouse Models of Amyotrophic Lateral Sclerosis Pozzi, Silvia Thammisetty, Sai Sampath Julien, Jean-Pierre Neurotherapeutics Original Article Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which presently does not have any efficient therapeutic approach. Pimozide, a Food and Drug Administration (FDA)-approved neuroepileptic drug, has been recently proposed as a promising treatment for ALS patients based on apparent stabilization of right hand muscles after a short-time administration. A new clinical trial started at the end of 2017 to recruit patients with a prolonged drug delivery schedule. Here, our aim was to investigate the effects of chronic administration of pimozide on disease progression and pathological events in two mouse models of ALS. Pimozide was administered every 2 days to transgenic mice bearing the ALS-linked A315T mutation on the human TAR DNA-binding protein 43 (TDP-43) gene and to mice carrying the human superoxide dismutase 1 (SOD1) gene with the ALS-linked G93A mutation. Chronic administration of pimozide exacerbated motor performances in both animal models and reduced survival in SOD1(G93A) mice. In TDP-43(A315)T, it decreased the percentage of innervated neuromuscular junctions (NMJs) and increased the accumulation of insoluble TDP-43. In SOD1(G93A) mice, pimozide had no effects on NMJ innervation or motoneuron loss, but it increased the levels of misfolded SOD1. We conclude that a chronic administration of pimozide did not confer beneficial effects on disease progression in two mouse models of ALS. In light of a new clinical trial on ALS patients with a chronic regime of pimozide, these results with mouse models suggest prudence and careful monitoring of ALS patients subjected to pimozide treatment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s13311-018-0634-3) contains supplementary material, which is available to authorized users. Springer International Publishing 2018-05-22 2018-07 /pmc/articles/PMC6095790/ /pubmed/29790082 http://dx.doi.org/10.1007/s13311-018-0634-3 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Pozzi, Silvia Thammisetty, Sai Sampath Julien, Jean-Pierre Chronic Administration of Pimozide Fails to Attenuate Motor and Pathological Deficits in Two Mouse Models of Amyotrophic Lateral Sclerosis |
title | Chronic Administration of Pimozide Fails to Attenuate Motor and Pathological Deficits in Two Mouse Models of Amyotrophic Lateral Sclerosis |
title_full | Chronic Administration of Pimozide Fails to Attenuate Motor and Pathological Deficits in Two Mouse Models of Amyotrophic Lateral Sclerosis |
title_fullStr | Chronic Administration of Pimozide Fails to Attenuate Motor and Pathological Deficits in Two Mouse Models of Amyotrophic Lateral Sclerosis |
title_full_unstemmed | Chronic Administration of Pimozide Fails to Attenuate Motor and Pathological Deficits in Two Mouse Models of Amyotrophic Lateral Sclerosis |
title_short | Chronic Administration of Pimozide Fails to Attenuate Motor and Pathological Deficits in Two Mouse Models of Amyotrophic Lateral Sclerosis |
title_sort | chronic administration of pimozide fails to attenuate motor and pathological deficits in two mouse models of amyotrophic lateral sclerosis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095790/ https://www.ncbi.nlm.nih.gov/pubmed/29790082 http://dx.doi.org/10.1007/s13311-018-0634-3 |
work_keys_str_mv | AT pozzisilvia chronicadministrationofpimozidefailstoattenuatemotorandpathologicaldeficitsintwomousemodelsofamyotrophiclateralsclerosis AT thammisettysaisampath chronicadministrationofpimozidefailstoattenuatemotorandpathologicaldeficitsintwomousemodelsofamyotrophiclateralsclerosis AT julienjeanpierre chronicadministrationofpimozidefailstoattenuatemotorandpathologicaldeficitsintwomousemodelsofamyotrophiclateralsclerosis |