Cargando…

Mechanical glass transition revealed by the fracture toughness of metallic glasses

The fracture toughness of glassy materials remains poorly understood. In large part, this is due to the disordered, intrinsically non-equilibrium nature of the glass structure, which challenges its theoretical description and experimental determination. We show that the notch fracture toughness of m...

Descripción completa

Detalles Bibliográficos
Autores principales: Ketkaew, Jittisa, Chen, Wen, Wang, Hui, Datye, Amit, Fan, Meng, Pereira, Gabriela, Schwarz, Udo D., Liu, Ze, Yamada, Rui, Dmowski, Wojciech, Shattuck, Mark D., O’Hern, Corey S., Egami, Takeshi, Bouchbinder, Eran, Schroers, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095891/
https://www.ncbi.nlm.nih.gov/pubmed/30115910
http://dx.doi.org/10.1038/s41467-018-05682-8
Descripción
Sumario:The fracture toughness of glassy materials remains poorly understood. In large part, this is due to the disordered, intrinsically non-equilibrium nature of the glass structure, which challenges its theoretical description and experimental determination. We show that the notch fracture toughness of metallic glasses exhibits an abrupt toughening transition as a function of a well-controlled fictive temperature (T(f)), which characterizes the average glass structure. The ordinary temperature, which has been previously associated with a ductile-to-brittle transition, is shown to play a secondary role. The observed transition is interpreted to result from a competition between the T(f)-dependent plastic relaxation rate and an applied strain rate. Consequently, a similar toughening transition as a function of strain rate is predicted and demonstrated experimentally. The observed mechanical toughening transition bears strong similarities to the ordinary glass transition and explains the previously reported large scatter in fracture toughness data and ductile-to-brittle transitions.