Cargando…

Modelling vaporised hydrogen peroxide efficacy against mono-species biofilms

This pilot study investigates a novel approach towards efficacy testing of antimicrobial cleaning agents; focusing primarily on hydrogen peroxide vapour (HPV). Contaminated surfaces are recognised modes of pathogen transmission within healthcare environments and increase the risk of pathogen acquisi...

Descripción completa

Detalles Bibliográficos
Autores principales: Watson, F., Keevil, C. W., Wilks, S. A., Chewins, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095907/
https://www.ncbi.nlm.nih.gov/pubmed/30115938
http://dx.doi.org/10.1038/s41598-018-30706-0
Descripción
Sumario:This pilot study investigates a novel approach towards efficacy testing of antimicrobial cleaning agents; focusing primarily on hydrogen peroxide vapour (HPV). Contaminated surfaces are recognised modes of pathogen transmission within healthcare environments and increase the risk of pathogen acquisition in newly admitted patients. Studies have shown these pathogens can survive on surfaces for extended periods of time in spite of cleaning. This resilience is characteristic of biofilm formation and recent publications have identified their presence in hospitals. In this study, biofilm models comprised of multidrug-resistant organisms (MDROs) were generated using a drip flow reactor and exposed to HPV decontamination. The MDROs included Acinetobacter baumannii, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. Upon exposure, samples were periodically removed and enumerated to generate kill curves for each species. Consequently revealing any inherent resistances; such as catalase-producing organisms which expressed reduced susceptibility. Epifluorescence microscopy revealed an abundance of viable and non-viable microcolonies before and after decontamination, respectively. Greater than 6-Log(10) reduction was achieved within a 100 minutes exposure time. This pilot study puts forward a potential methodology for testing antimicrobial agents against biofilms and supports the efficacy of HPV.