Cargando…

Parasite transmission between trophic levels stabilizes predator–prey interaction

Manipulative parasites that promote their transmission by altering their host’s phenotype are widespread in nature, which suggests that host manipulation allows the permanent coexistence of the host with the parasite. However, the underlying mechanism by which host manipulation affects community sta...

Descripción completa

Detalles Bibliográficos
Autores principales: Rogawa, Akiyoshi, Ogata, Shigeki, Mougi, Akihiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095923/
https://www.ncbi.nlm.nih.gov/pubmed/30115952
http://dx.doi.org/10.1038/s41598-018-30818-7
Descripción
Sumario:Manipulative parasites that promote their transmission by altering their host’s phenotype are widespread in nature, which suggests that host manipulation allows the permanent coexistence of the host with the parasite. However, the underlying mechanism by which host manipulation affects community stability remains unelucidated. Here, using a mathematical model, we show that host manipulation can stabilise community dynamics. We consider systems wherein parasites are transmitted between different trophic levels: intermediate host prey and final host predator. Without host manipulation, the non-manipulative parasite can destabilise an otherwise globally stable prey–predator system, causing population cycles. However, host manipulation can dampen such population cycles, particularly when the manipulation is strong. This finding suggests that host manipulation is a consequence of self-organized behavior of the parasite populations that allows permanent coexistence with the hosts and plays a key role in community stability.