Cargando…

Enhanced co-registration methods to improve intracranial electrode contact localization

BACKGROUND: Electrode contact locations are important when planning tailored brain surgeries to identify pathological tissue targeted for resection and conversely avoid eloquent tissue. Current methods employ trained experts to use neuroimaging scans that are manually co-registered and localize cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Hinds, Walter A., Misra, Amrit, Sperling, Michael R., Sharan, Ashwini, Tracy, Joseph I., Moxon, Karen A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095944/
https://www.ncbi.nlm.nih.gov/pubmed/30128278
http://dx.doi.org/10.1016/j.nicl.2018.07.026
_version_ 1783348015784787968
author Hinds, Walter A.
Misra, Amrit
Sperling, Michael R.
Sharan, Ashwini
Tracy, Joseph I.
Moxon, Karen A.
author_facet Hinds, Walter A.
Misra, Amrit
Sperling, Michael R.
Sharan, Ashwini
Tracy, Joseph I.
Moxon, Karen A.
author_sort Hinds, Walter A.
collection PubMed
description BACKGROUND: Electrode contact locations are important when planning tailored brain surgeries to identify pathological tissue targeted for resection and conversely avoid eloquent tissue. Current methods employ trained experts to use neuroimaging scans that are manually co-registered and localize contacts within ~2 mm. Yet, the state of the art is limited by either the expertise needed for each type of intracranial electrode or the inter-modality co-registration which increases error, reducing accuracy. Patients often have a variety of strips, grids and depths implanted; therefore, it is cumbersome and time-consuming to apply separate localization methods for each type of electrode, requiring expertise across different approaches. NEW METHOD: To overcome these limitations, a computational method was developed by separately registering an implant magnetic resonance image (MRI) and implant computed tomography image (CT) to the pre-implant MRI, then calculating an iterative closest point transformation using the contact locations extracted from the signal voids as ground truth. RESULTS: The implant MRI is robustly co-registered to the pre-implant MRI with a boundary-based registration algorithm. By extracting and utilizing ‘signal voids’ (the metal induced artifacts from the implant MRI) as electrode fiducials, the novel method is an all-in-one approach for all types of intracranial electrodes while eliminating inter-modality co-registration errors. COMPARISON WITH EXISTING METHODS: The distance between each electrode centroid and the brain's surface was measured, for the proposed method as well as the state of the art method using two available software packages, SPM 12 and FSL 4.1. The method presented here achieves the smallest distances to the brain's surface for all strip and grid type electrodes, i.e. contacts designed to rest directly on the brain surface. CONCLUSION: We use one of the largest reported sample sizes in localization studies to validate this novel method for localizing different kinds of intracranial electrodes including grids, strips and depth electrodes.
format Online
Article
Text
id pubmed-6095944
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-60959442018-08-20 Enhanced co-registration methods to improve intracranial electrode contact localization Hinds, Walter A. Misra, Amrit Sperling, Michael R. Sharan, Ashwini Tracy, Joseph I. Moxon, Karen A. Neuroimage Clin Regular Article BACKGROUND: Electrode contact locations are important when planning tailored brain surgeries to identify pathological tissue targeted for resection and conversely avoid eloquent tissue. Current methods employ trained experts to use neuroimaging scans that are manually co-registered and localize contacts within ~2 mm. Yet, the state of the art is limited by either the expertise needed for each type of intracranial electrode or the inter-modality co-registration which increases error, reducing accuracy. Patients often have a variety of strips, grids and depths implanted; therefore, it is cumbersome and time-consuming to apply separate localization methods for each type of electrode, requiring expertise across different approaches. NEW METHOD: To overcome these limitations, a computational method was developed by separately registering an implant magnetic resonance image (MRI) and implant computed tomography image (CT) to the pre-implant MRI, then calculating an iterative closest point transformation using the contact locations extracted from the signal voids as ground truth. RESULTS: The implant MRI is robustly co-registered to the pre-implant MRI with a boundary-based registration algorithm. By extracting and utilizing ‘signal voids’ (the metal induced artifacts from the implant MRI) as electrode fiducials, the novel method is an all-in-one approach for all types of intracranial electrodes while eliminating inter-modality co-registration errors. COMPARISON WITH EXISTING METHODS: The distance between each electrode centroid and the brain's surface was measured, for the proposed method as well as the state of the art method using two available software packages, SPM 12 and FSL 4.1. The method presented here achieves the smallest distances to the brain's surface for all strip and grid type electrodes, i.e. contacts designed to rest directly on the brain surface. CONCLUSION: We use one of the largest reported sample sizes in localization studies to validate this novel method for localizing different kinds of intracranial electrodes including grids, strips and depth electrodes. Elsevier 2018-08-01 /pmc/articles/PMC6095944/ /pubmed/30128278 http://dx.doi.org/10.1016/j.nicl.2018.07.026 Text en © 2018 Published by Elsevier Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular Article
Hinds, Walter A.
Misra, Amrit
Sperling, Michael R.
Sharan, Ashwini
Tracy, Joseph I.
Moxon, Karen A.
Enhanced co-registration methods to improve intracranial electrode contact localization
title Enhanced co-registration methods to improve intracranial electrode contact localization
title_full Enhanced co-registration methods to improve intracranial electrode contact localization
title_fullStr Enhanced co-registration methods to improve intracranial electrode contact localization
title_full_unstemmed Enhanced co-registration methods to improve intracranial electrode contact localization
title_short Enhanced co-registration methods to improve intracranial electrode contact localization
title_sort enhanced co-registration methods to improve intracranial electrode contact localization
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095944/
https://www.ncbi.nlm.nih.gov/pubmed/30128278
http://dx.doi.org/10.1016/j.nicl.2018.07.026
work_keys_str_mv AT hindswaltera enhancedcoregistrationmethodstoimproveintracranialelectrodecontactlocalization
AT misraamrit enhancedcoregistrationmethodstoimproveintracranialelectrodecontactlocalization
AT sperlingmichaelr enhancedcoregistrationmethodstoimproveintracranialelectrodecontactlocalization
AT sharanashwini enhancedcoregistrationmethodstoimproveintracranialelectrodecontactlocalization
AT tracyjosephi enhancedcoregistrationmethodstoimproveintracranialelectrodecontactlocalization
AT moxonkarena enhancedcoregistrationmethodstoimproveintracranialelectrodecontactlocalization