Cargando…
The MicroRNA319d/TCP10 Node Regulates the Common Bean – Rhizobia Nitrogen-Fixing Symbiosis
Micro-RNAs from legume plants are emerging as relevant regulators of the rhizobia nitrogen-fixing symbiosis. In this work we functionally characterized the role of the node conformed by micro-RNA319 (miR319) – TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factor in the common bean (Phaseolus v...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095992/ https://www.ncbi.nlm.nih.gov/pubmed/30147704 http://dx.doi.org/10.3389/fpls.2018.01175 |
_version_ | 1783348026963656704 |
---|---|
author | Martín-Rodríguez, José Á. Leija, Alfonso Formey, Damien Hernández, Georgina |
author_facet | Martín-Rodríguez, José Á. Leija, Alfonso Formey, Damien Hernández, Georgina |
author_sort | Martín-Rodríguez, José Á. |
collection | PubMed |
description | Micro-RNAs from legume plants are emerging as relevant regulators of the rhizobia nitrogen-fixing symbiosis. In this work we functionally characterized the role of the node conformed by micro-RNA319 (miR319) – TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factor in the common bean (Phaseolus vulgaris) – Rhizobium tropici symbiosis. The miR319d, one of nine miR319 isoforms from common bean, was highly expressed in root and nodules from inoculated plants as compared to roots from fertilized plants. The miR319d targets TCP10 (Phvul.005G067950), identified by degradome analysis, whose expression showed a negative correlation with miR319d expression. The phenotypic analysis of R. tropici-inoculated composite plants with transgenic roots/nodules overexpressing or silencing the function of miR319d demonstrated the relevant role of the miR319d/TCP10 node in the common bean rhizobia symbiosis. Increased miR319d resulted in reduced root length/width ratio, increased rhizobial infection evidenced by more deformed root hairs and infection threads, and decreased nodule formation and nitrogenase activity per plant. In addition, these plants with lower TCP10 levels showed decreased expression level of the jasmonic acid (JA) biosynthetic gene: LOX2. The transcription of LOX2 by TCPs has been demonstrated for Arabidopsis and in several plants LOX2 level and JA content have been associate with TCP levels. On this basis, we propose that in roots/nodules of inoculated common bean plants TCP10 could be the transcriptional regulator of LOX2 and the miR319d/TCP10 node could affect nodulation through JA signaling. However, given the complexity of nodulation, the participation of other signaling pathways in the phenotypes observed cannot be ruled out. |
format | Online Article Text |
id | pubmed-6095992 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60959922018-08-24 The MicroRNA319d/TCP10 Node Regulates the Common Bean – Rhizobia Nitrogen-Fixing Symbiosis Martín-Rodríguez, José Á. Leija, Alfonso Formey, Damien Hernández, Georgina Front Plant Sci Plant Science Micro-RNAs from legume plants are emerging as relevant regulators of the rhizobia nitrogen-fixing symbiosis. In this work we functionally characterized the role of the node conformed by micro-RNA319 (miR319) – TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factor in the common bean (Phaseolus vulgaris) – Rhizobium tropici symbiosis. The miR319d, one of nine miR319 isoforms from common bean, was highly expressed in root and nodules from inoculated plants as compared to roots from fertilized plants. The miR319d targets TCP10 (Phvul.005G067950), identified by degradome analysis, whose expression showed a negative correlation with miR319d expression. The phenotypic analysis of R. tropici-inoculated composite plants with transgenic roots/nodules overexpressing or silencing the function of miR319d demonstrated the relevant role of the miR319d/TCP10 node in the common bean rhizobia symbiosis. Increased miR319d resulted in reduced root length/width ratio, increased rhizobial infection evidenced by more deformed root hairs and infection threads, and decreased nodule formation and nitrogenase activity per plant. In addition, these plants with lower TCP10 levels showed decreased expression level of the jasmonic acid (JA) biosynthetic gene: LOX2. The transcription of LOX2 by TCPs has been demonstrated for Arabidopsis and in several plants LOX2 level and JA content have been associate with TCP levels. On this basis, we propose that in roots/nodules of inoculated common bean plants TCP10 could be the transcriptional regulator of LOX2 and the miR319d/TCP10 node could affect nodulation through JA signaling. However, given the complexity of nodulation, the participation of other signaling pathways in the phenotypes observed cannot be ruled out. Frontiers Media S.A. 2018-08-10 /pmc/articles/PMC6095992/ /pubmed/30147704 http://dx.doi.org/10.3389/fpls.2018.01175 Text en Copyright © 2018 Martín-Rodríguez, Leija, Formey and Hernández. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Martín-Rodríguez, José Á. Leija, Alfonso Formey, Damien Hernández, Georgina The MicroRNA319d/TCP10 Node Regulates the Common Bean – Rhizobia Nitrogen-Fixing Symbiosis |
title | The MicroRNA319d/TCP10 Node Regulates the Common Bean – Rhizobia Nitrogen-Fixing Symbiosis |
title_full | The MicroRNA319d/TCP10 Node Regulates the Common Bean – Rhizobia Nitrogen-Fixing Symbiosis |
title_fullStr | The MicroRNA319d/TCP10 Node Regulates the Common Bean – Rhizobia Nitrogen-Fixing Symbiosis |
title_full_unstemmed | The MicroRNA319d/TCP10 Node Regulates the Common Bean – Rhizobia Nitrogen-Fixing Symbiosis |
title_short | The MicroRNA319d/TCP10 Node Regulates the Common Bean – Rhizobia Nitrogen-Fixing Symbiosis |
title_sort | microrna319d/tcp10 node regulates the common bean – rhizobia nitrogen-fixing symbiosis |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095992/ https://www.ncbi.nlm.nih.gov/pubmed/30147704 http://dx.doi.org/10.3389/fpls.2018.01175 |
work_keys_str_mv | AT martinrodriguezjosea themicrorna319dtcp10noderegulatesthecommonbeanrhizobianitrogenfixingsymbiosis AT leijaalfonso themicrorna319dtcp10noderegulatesthecommonbeanrhizobianitrogenfixingsymbiosis AT formeydamien themicrorna319dtcp10noderegulatesthecommonbeanrhizobianitrogenfixingsymbiosis AT hernandezgeorgina themicrorna319dtcp10noderegulatesthecommonbeanrhizobianitrogenfixingsymbiosis AT martinrodriguezjosea microrna319dtcp10noderegulatesthecommonbeanrhizobianitrogenfixingsymbiosis AT leijaalfonso microrna319dtcp10noderegulatesthecommonbeanrhizobianitrogenfixingsymbiosis AT formeydamien microrna319dtcp10noderegulatesthecommonbeanrhizobianitrogenfixingsymbiosis AT hernandezgeorgina microrna319dtcp10noderegulatesthecommonbeanrhizobianitrogenfixingsymbiosis |