Cargando…

Downregulation of ERBB3 decreases the proliferation, migration and invasion of cervical cancer cells though the interaction with MTK-1

Cervical cancer is a common malignancy in females. Diagnosis and treatment of cervical cancer remains a challenge due to difficulties in the presence of tumor metastasis. Increased expression level of Erb-b2 receptor tyrosine kinase 3 (ERBB3) has previously been demonstrated to be associated with th...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Jingyun, Zhou, Shihua, Wang, Li, Yu, Mulan, Mei, Liyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096111/
https://www.ncbi.nlm.nih.gov/pubmed/30127948
http://dx.doi.org/10.3892/ol.2018.9088
Descripción
Sumario:Cervical cancer is a common malignancy in females. Diagnosis and treatment of cervical cancer remains a challenge due to difficulties in the presence of tumor metastasis. Increased expression level of Erb-b2 receptor tyrosine kinase 3 (ERBB3) has previously been demonstrated to be associated with the occurrence of cervical cancer; however, the functionality of ERBB3 in the development of cervical cancer remains incompletely understood. In the present study, the expression level of ERBB3 in patients with cervical squamous cell carcinoma and cervical adenocarcinoma was detected by reverse transcription quantitative polymerase chain reaction. The effects of ERBB3 small interfering RNA silencing on cell proliferation, migration and invasion were explored, and the interaction between ERBB3 and mitogen-activated protein kinase kinase kinase 4 (MTK-1) was also investigated. It was identified that the downregulation of ERBB3 significantly decreased the proliferative, migratory and invasive abilities of cervical cancer cells. In addition, the expression level of MTK-1 was also significantly decreased following MTK-1 siRNA silencing. Therefore, we hypothesize that the downregulation of ERBB3 may decrease the proliferative, migratory and invasive abilities of cervical cancer cells by inhibiting the expression of MTK-1.