Cargando…

Calcium gluconate alleviates the toxic effect of hydrofluoric acid on human dermal fibroblasts through the Wnt/β-catenin pathway

The present study was performed to determine the molecular mechanism of calcium gluconate (CG) in alleviating the toxic effect of hydrofluoric (HF) acid on human dermal fibroblasts (HDFs). HDF morphology was observed by optical microscopy and the vimentin immunofluorescence assay. Cell viability and...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Jinxia, Liu, Rui, Peng, Ling, Jia, Hongtao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096138/
https://www.ncbi.nlm.nih.gov/pubmed/30127880
http://dx.doi.org/10.3892/ol.2018.8975
_version_ 1783348051034767360
author Peng, Jinxia
Liu, Rui
Peng, Ling
Jia, Hongtao
author_facet Peng, Jinxia
Liu, Rui
Peng, Ling
Jia, Hongtao
author_sort Peng, Jinxia
collection PubMed
description The present study was performed to determine the molecular mechanism of calcium gluconate (CG) in alleviating the toxic effect of hydrofluoric (HF) acid on human dermal fibroblasts (HDFs). HDF morphology was observed by optical microscopy and the vimentin immunofluorescence assay. Cell viability and apoptosis were evaluated by the Cell Counting Kit-8 and Annexin V/propidium iodide assays, respectively. The levels of apoptosis-associated factors, as well as Wnt2, Wnt3a and β-catenin were detected by reverse transcription-quantitative polymerase chain reaction and western blotting. Levels of matrix metalloproteinase (MMP)-1 and basic fibroblast growth factor (bFGF) were detected by ELISA and western blotting. Carboxyterminal propeptide of type I collagen (CICP) was detected by ELISA, while L-Hydroxyproline (L-HYP) was detected by colorimetry. First, the morphology of normal HDFs was observed. Cell viability was inhibited and apoptosis was increased in a dose- and time-dependent manner following treatment with HF acid [0, 2, 4, 6, 8, 10 and 20% (v/v)] for 0, 2, 4, 6, 8, 10 and 20 min. The effects were blocked by CG at different doses (50, 100 and 200 µmol/l) and time points (6, 12 and 24 h), following treatment with 8% (v/v) HF acid for 6 min. The levels of Caspase-3, B-cell lymphoma (Bcl)-2 associated X protein, Wnt2, Wnt3a and β-catenin were decreased, whereas Bcl-2 was increased by CG treatment dose-dependently, when compared with HF control. CG promoted the expression of MMP-1, bFGF and L-HYP, and inhibited CICP, when compared with HF control. Based on the present results, CG alleviated the toxic effect of HF acid on HDFs by regulating the Wnt/β-catenin signaling pathway.
format Online
Article
Text
id pubmed-6096138
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-60961382018-08-20 Calcium gluconate alleviates the toxic effect of hydrofluoric acid on human dermal fibroblasts through the Wnt/β-catenin pathway Peng, Jinxia Liu, Rui Peng, Ling Jia, Hongtao Oncol Lett Articles The present study was performed to determine the molecular mechanism of calcium gluconate (CG) in alleviating the toxic effect of hydrofluoric (HF) acid on human dermal fibroblasts (HDFs). HDF morphology was observed by optical microscopy and the vimentin immunofluorescence assay. Cell viability and apoptosis were evaluated by the Cell Counting Kit-8 and Annexin V/propidium iodide assays, respectively. The levels of apoptosis-associated factors, as well as Wnt2, Wnt3a and β-catenin were detected by reverse transcription-quantitative polymerase chain reaction and western blotting. Levels of matrix metalloproteinase (MMP)-1 and basic fibroblast growth factor (bFGF) were detected by ELISA and western blotting. Carboxyterminal propeptide of type I collagen (CICP) was detected by ELISA, while L-Hydroxyproline (L-HYP) was detected by colorimetry. First, the morphology of normal HDFs was observed. Cell viability was inhibited and apoptosis was increased in a dose- and time-dependent manner following treatment with HF acid [0, 2, 4, 6, 8, 10 and 20% (v/v)] for 0, 2, 4, 6, 8, 10 and 20 min. The effects were blocked by CG at different doses (50, 100 and 200 µmol/l) and time points (6, 12 and 24 h), following treatment with 8% (v/v) HF acid for 6 min. The levels of Caspase-3, B-cell lymphoma (Bcl)-2 associated X protein, Wnt2, Wnt3a and β-catenin were decreased, whereas Bcl-2 was increased by CG treatment dose-dependently, when compared with HF control. CG promoted the expression of MMP-1, bFGF and L-HYP, and inhibited CICP, when compared with HF control. Based on the present results, CG alleviated the toxic effect of HF acid on HDFs by regulating the Wnt/β-catenin signaling pathway. D.A. Spandidos 2018-09 2018-06-18 /pmc/articles/PMC6096138/ /pubmed/30127880 http://dx.doi.org/10.3892/ol.2018.8975 Text en Copyright: © Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Peng, Jinxia
Liu, Rui
Peng, Ling
Jia, Hongtao
Calcium gluconate alleviates the toxic effect of hydrofluoric acid on human dermal fibroblasts through the Wnt/β-catenin pathway
title Calcium gluconate alleviates the toxic effect of hydrofluoric acid on human dermal fibroblasts through the Wnt/β-catenin pathway
title_full Calcium gluconate alleviates the toxic effect of hydrofluoric acid on human dermal fibroblasts through the Wnt/β-catenin pathway
title_fullStr Calcium gluconate alleviates the toxic effect of hydrofluoric acid on human dermal fibroblasts through the Wnt/β-catenin pathway
title_full_unstemmed Calcium gluconate alleviates the toxic effect of hydrofluoric acid on human dermal fibroblasts through the Wnt/β-catenin pathway
title_short Calcium gluconate alleviates the toxic effect of hydrofluoric acid on human dermal fibroblasts through the Wnt/β-catenin pathway
title_sort calcium gluconate alleviates the toxic effect of hydrofluoric acid on human dermal fibroblasts through the wnt/β-catenin pathway
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096138/
https://www.ncbi.nlm.nih.gov/pubmed/30127880
http://dx.doi.org/10.3892/ol.2018.8975
work_keys_str_mv AT pengjinxia calciumgluconatealleviatesthetoxiceffectofhydrofluoricacidonhumandermalfibroblaststhroughthewntbcateninpathway
AT liurui calciumgluconatealleviatesthetoxiceffectofhydrofluoricacidonhumandermalfibroblaststhroughthewntbcateninpathway
AT pengling calciumgluconatealleviatesthetoxiceffectofhydrofluoricacidonhumandermalfibroblaststhroughthewntbcateninpathway
AT jiahongtao calciumgluconatealleviatesthetoxiceffectofhydrofluoricacidonhumandermalfibroblaststhroughthewntbcateninpathway