Cargando…

Improving Consumer Understanding of Medical Text: Development and Validation of a New SubSimplify Algorithm to Automatically Generate Term Explanations in English and Spanish

BACKGROUND: While health literacy is important for people to maintain good health and manage diseases, medical educational texts are often written beyond the reading level of the average individual. To mitigate this disconnect, text simplification research provides methods to increase readability an...

Descripción completa

Detalles Bibliográficos
Autores principales: Kloehn, Nicholas, Leroy, Gondy, Kauchak, David, Gu, Yang, Colina, Sonia, Yuan, Nicole P, Revere, Debra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096166/
https://www.ncbi.nlm.nih.gov/pubmed/30072361
http://dx.doi.org/10.2196/10779
_version_ 1783348055663181824
author Kloehn, Nicholas
Leroy, Gondy
Kauchak, David
Gu, Yang
Colina, Sonia
Yuan, Nicole P
Revere, Debra
author_facet Kloehn, Nicholas
Leroy, Gondy
Kauchak, David
Gu, Yang
Colina, Sonia
Yuan, Nicole P
Revere, Debra
author_sort Kloehn, Nicholas
collection PubMed
description BACKGROUND: While health literacy is important for people to maintain good health and manage diseases, medical educational texts are often written beyond the reading level of the average individual. To mitigate this disconnect, text simplification research provides methods to increase readability and, therefore, comprehension. One method of text simplification is to isolate particularly difficult terms within a document and replace them with easier synonyms (lexical simplification) or an explanation in plain language (semantic simplification). Unfortunately, existing dictionaries are seldom complete, and consequently, resources for many difficult terms are unavailable. This is the case for English and Spanish resources. OBJECTIVE: Our objective was to automatically generate explanations for difficult terms in both English and Spanish when they are not covered by existing resources. The system we present combines existing resources for explanation generation using a novel algorithm (SubSimplify) to create additional explanations. METHODS: SubSimplify uses word-level parsing techniques and specialized medical affix dictionaries to identify the morphological units of a term and then source their definitions. While the underlying resources are different, SubSimplify applies the same principles in both languages. To evaluate our approach, we used term familiarity to identify difficult terms in English and Spanish and then generated explanations for them. For each language, we extracted 400 difficult terms from two different article types (General and Medical topics) balanced for frequency. For English terms, we compared SubSimplify’s explanation with the explanations from the Consumer Health Vocabulary, WordNet Synonyms and Summaries, as well as Word Embedding Vector (WEV) synonyms. For Spanish terms, we compared the explanation to WordNet Summaries and WEV Embedding synonyms. We evaluated quality, coverage, and usefulness for the simplification provided for each term. Quality is the average score from two subject experts on a 1-4 Likert scale (two per language) for the synonyms or explanations provided by the source. Coverage is the number of terms for which a source could provide an explanation. Usefulness is the same expert score, however, with a 0 assigned when no explanations or synonyms were available for a term. RESULTS: SubSimplify resulted in quality scores of 1.64 for English (P<.001) and 1.49 for Spanish (P<.001), which were lower than those of existing resources (Consumer Health Vocabulary [CHV]=2.81). However, in coverage, SubSimplify outperforms all existing written resources, increasing the coverage from 53.0% to 80.5% in English and from 20.8% to 90.8% in Spanish (P<.001). This result means that the usefulness score of SubSimplify (1.32; P<.001) is greater than that of most existing resources (eg, CHV=0.169). CONCLUSIONS: Our approach is intended as an additional resource to existing, manually created resources. It greatly increases the number of difficult terms for which an easier alternative can be made available, resulting in greater actual usefulness.
format Online
Article
Text
id pubmed-6096166
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-60961662018-08-21 Improving Consumer Understanding of Medical Text: Development and Validation of a New SubSimplify Algorithm to Automatically Generate Term Explanations in English and Spanish Kloehn, Nicholas Leroy, Gondy Kauchak, David Gu, Yang Colina, Sonia Yuan, Nicole P Revere, Debra J Med Internet Res Original Paper BACKGROUND: While health literacy is important for people to maintain good health and manage diseases, medical educational texts are often written beyond the reading level of the average individual. To mitigate this disconnect, text simplification research provides methods to increase readability and, therefore, comprehension. One method of text simplification is to isolate particularly difficult terms within a document and replace them with easier synonyms (lexical simplification) or an explanation in plain language (semantic simplification). Unfortunately, existing dictionaries are seldom complete, and consequently, resources for many difficult terms are unavailable. This is the case for English and Spanish resources. OBJECTIVE: Our objective was to automatically generate explanations for difficult terms in both English and Spanish when they are not covered by existing resources. The system we present combines existing resources for explanation generation using a novel algorithm (SubSimplify) to create additional explanations. METHODS: SubSimplify uses word-level parsing techniques and specialized medical affix dictionaries to identify the morphological units of a term and then source their definitions. While the underlying resources are different, SubSimplify applies the same principles in both languages. To evaluate our approach, we used term familiarity to identify difficult terms in English and Spanish and then generated explanations for them. For each language, we extracted 400 difficult terms from two different article types (General and Medical topics) balanced for frequency. For English terms, we compared SubSimplify’s explanation with the explanations from the Consumer Health Vocabulary, WordNet Synonyms and Summaries, as well as Word Embedding Vector (WEV) synonyms. For Spanish terms, we compared the explanation to WordNet Summaries and WEV Embedding synonyms. We evaluated quality, coverage, and usefulness for the simplification provided for each term. Quality is the average score from two subject experts on a 1-4 Likert scale (two per language) for the synonyms or explanations provided by the source. Coverage is the number of terms for which a source could provide an explanation. Usefulness is the same expert score, however, with a 0 assigned when no explanations or synonyms were available for a term. RESULTS: SubSimplify resulted in quality scores of 1.64 for English (P<.001) and 1.49 for Spanish (P<.001), which were lower than those of existing resources (Consumer Health Vocabulary [CHV]=2.81). However, in coverage, SubSimplify outperforms all existing written resources, increasing the coverage from 53.0% to 80.5% in English and from 20.8% to 90.8% in Spanish (P<.001). This result means that the usefulness score of SubSimplify (1.32; P<.001) is greater than that of most existing resources (eg, CHV=0.169). CONCLUSIONS: Our approach is intended as an additional resource to existing, manually created resources. It greatly increases the number of difficult terms for which an easier alternative can be made available, resulting in greater actual usefulness. JMIR Publications 2018-08-02 /pmc/articles/PMC6096166/ /pubmed/30072361 http://dx.doi.org/10.2196/10779 Text en ©Nicholas Kloehn, Gondy Leroy, David Kauchak, Yang Gu, Sonia Colina, Nicole P Yuan, Debra Revere. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 02.08.2018. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Kloehn, Nicholas
Leroy, Gondy
Kauchak, David
Gu, Yang
Colina, Sonia
Yuan, Nicole P
Revere, Debra
Improving Consumer Understanding of Medical Text: Development and Validation of a New SubSimplify Algorithm to Automatically Generate Term Explanations in English and Spanish
title Improving Consumer Understanding of Medical Text: Development and Validation of a New SubSimplify Algorithm to Automatically Generate Term Explanations in English and Spanish
title_full Improving Consumer Understanding of Medical Text: Development and Validation of a New SubSimplify Algorithm to Automatically Generate Term Explanations in English and Spanish
title_fullStr Improving Consumer Understanding of Medical Text: Development and Validation of a New SubSimplify Algorithm to Automatically Generate Term Explanations in English and Spanish
title_full_unstemmed Improving Consumer Understanding of Medical Text: Development and Validation of a New SubSimplify Algorithm to Automatically Generate Term Explanations in English and Spanish
title_short Improving Consumer Understanding of Medical Text: Development and Validation of a New SubSimplify Algorithm to Automatically Generate Term Explanations in English and Spanish
title_sort improving consumer understanding of medical text: development and validation of a new subsimplify algorithm to automatically generate term explanations in english and spanish
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096166/
https://www.ncbi.nlm.nih.gov/pubmed/30072361
http://dx.doi.org/10.2196/10779
work_keys_str_mv AT kloehnnicholas improvingconsumerunderstandingofmedicaltextdevelopmentandvalidationofanewsubsimplifyalgorithmtoautomaticallygeneratetermexplanationsinenglishandspanish
AT leroygondy improvingconsumerunderstandingofmedicaltextdevelopmentandvalidationofanewsubsimplifyalgorithmtoautomaticallygeneratetermexplanationsinenglishandspanish
AT kauchakdavid improvingconsumerunderstandingofmedicaltextdevelopmentandvalidationofanewsubsimplifyalgorithmtoautomaticallygeneratetermexplanationsinenglishandspanish
AT guyang improvingconsumerunderstandingofmedicaltextdevelopmentandvalidationofanewsubsimplifyalgorithmtoautomaticallygeneratetermexplanationsinenglishandspanish
AT colinasonia improvingconsumerunderstandingofmedicaltextdevelopmentandvalidationofanewsubsimplifyalgorithmtoautomaticallygeneratetermexplanationsinenglishandspanish
AT yuannicolep improvingconsumerunderstandingofmedicaltextdevelopmentandvalidationofanewsubsimplifyalgorithmtoautomaticallygeneratetermexplanationsinenglishandspanish
AT reveredebra improvingconsumerunderstandingofmedicaltextdevelopmentandvalidationofanewsubsimplifyalgorithmtoautomaticallygeneratetermexplanationsinenglishandspanish