Cargando…
Predicting short term mood developments among depressed patients using adherence and ecological momentary assessment data
Technology driven interventions provide us with an increasing amount of fine-grained data about the patient. This data includes regular ecological momentary assessments (EMA) but also response times to EMA questions by a user. When observing this data, we see a huge variation between the patterns ex...
Autores principales: | Mikus, Adam, Hoogendoorn, Mark, Rocha, Artur, Gama, Joao, Ruwaard, Jeroen, Riper, Heleen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096213/ https://www.ncbi.nlm.nih.gov/pubmed/30135774 http://dx.doi.org/10.1016/j.invent.2017.10.001 |
Ejemplares similares
-
Using multi-relational data mining to discriminate blended therapy efficiency on patients based on log data
por: Rocha, Artur, et al.
Publicado: (2018) -
Predicting therapy success for treatment as usual and blended treatment in the domain of depression
por: van Breda, Ward, et al.
Publicado: (2017) -
Barriers and facilitators for the implementation of blended psychotherapy for depression: A qualitative pilot study of therapists' perspective
por: Titzler, Ingrid, et al.
Publicado: (2018) -
FitMindKit: Randomised controlled trial of an automatically tailored online program for mood, anxiety, substance use and suicidality
por: Batterham, Philip J., et al.
Publicado: (2017) -
Mobile Phone-Based Unobtrusive Ecological Momentary Assessment of Day-to-Day Mood: An Explorative Study
por: Asselbergs, Joost, et al.
Publicado: (2016)