Cargando…

Antitumor efficacy of the Runx2-dendritic cell vaccine in triple-negative breast cancer in vitro

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis and limited effective treatment. The rise in immunotherapeutic strategies prompted the establishment of a genetic vaccine against TNBC in vitro using a possible biological marker of TNBC. In the present study, d...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Mi, Liu, Yu, Zhang, Qiao-Chu, Zhang, Peng, Wu, Jue-Kun, Wang, Jia-Ni, Ruan, Ying, Huang, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096217/
https://www.ncbi.nlm.nih.gov/pubmed/30127867
http://dx.doi.org/10.3892/ol.2018.9001
Descripción
Sumario:Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis and limited effective treatment. The rise in immunotherapeutic strategies prompted the establishment of a genetic vaccine against TNBC in vitro using a possible biological marker of TNBC. In the present study, different detection methods were used to evaluate the distribution and expression of runt-associated transcription factor 2 (Runx2) in various breast cancer cell lines. Following the development of the Runx2-dendritic cell (DC) vaccine using a lentivirus, the transfection efficacy was recorded. The T lymphocytes co-cultured with the vaccine were collected to assess the antitumor potency. Increased levels of Runx2 were expressed in breast cancer cells; however, different breast cancer cell lines expressed various levels of Runx2. Runx2 demonstrated particularly high expression in TNBC cells, compared with non-TNBC cells. A Runx2 lentivirus transfection system was successfully engineered, and Runx2 was transduced into dendritic cells whilst maintaining stable expression. The sustained and stable cytotoxic T cells induced in the transfected group had higher and more specific antitumor efficacy against TNBC, compared with the other cell lines. Runx2 may be a novel target for TNBC treatment. The Runx2-DC vaccine may induce specific and efficient antitumor effects in TNBC in vitro.