Cargando…
Predictive modeling in e-mental health: A common language framework
Recent developments in mobile technology, sensor devices, and artificial intelligence have created new opportunities for mental health care research. Enabled by large datasets collected in e-mental health research and practice, clinical researchers and members of the data mining community increasing...
Autores principales: | Becker, Dennis, van Breda, Ward, Funk, Burkhardt, Hoogendoorn, Mark, Ruwaard, Jeroen, Riper, Heleen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096321/ https://www.ncbi.nlm.nih.gov/pubmed/30135769 http://dx.doi.org/10.1016/j.invent.2018.03.002 |
Ejemplares similares
-
Predicting therapy success for treatment as usual and blended treatment in the domain of depression
por: van Breda, Ward, et al.
Publicado: (2017) -
Predicting Therapy Success and Costs for Personalized Treatment Recommendations Using Baseline Characteristics: Data-Driven Analysis
por: Bremer, Vincent, et al.
Publicado: (2018) -
Predicting short term mood developments among depressed patients using adherence and ecological momentary assessment data
por: Mikus, Adam, et al.
Publicado: (2017) -
Validating Automated Sentiment Analysis of Online Cognitive Behavioral Therapy Patient Texts: An Exploratory Study
por: Provoost, Simon, et al.
Publicado: (2019) -
Working Alliance in Blended Versus Face-to-Face Cognitive Behavioral Treatment for Patients with Depression in Specialized Mental Health Care
por: Kooistra, Lisa, et al.
Publicado: (2020)