Cargando…

Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden

Brain tumor delineation and treatment are the main concerns of neurosurgeons in neurosurgical operations. Bridging the gap between imaging/diagnosis and treatment will provide great convenience for neurosurgeons. Here, we developed an optical theranostics platform that helps to delineate the boundar...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Yingwei, Sun, Yu, Chang, Wei, Zhang, Xinran, Tang, Jie, Zhang, Liwei, Liao, Hongen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096384/
https://www.ncbi.nlm.nih.gov/pubmed/30128037
http://dx.doi.org/10.7150/thno.25357
_version_ 1783348094413307904
author Fan, Yingwei
Sun, Yu
Chang, Wei
Zhang, Xinran
Tang, Jie
Zhang, Liwei
Liao, Hongen
author_facet Fan, Yingwei
Sun, Yu
Chang, Wei
Zhang, Xinran
Tang, Jie
Zhang, Liwei
Liao, Hongen
author_sort Fan, Yingwei
collection PubMed
description Brain tumor delineation and treatment are the main concerns of neurosurgeons in neurosurgical operations. Bridging the gap between imaging/diagnosis and treatment will provide great convenience for neurosurgeons. Here, we developed an optical theranostics platform that helps to delineate the boundary and quantitatively analyze glioblastoma multiforms (GBMs) with bioluminescence imaging (BLI) to guide laser ablation, and we imaged the GBM cells with two-photon microscopy (TPM) to visualize the laser ablation zone in vivo. Methods: Laser ablation, using the method of coupled ablated path planning with the guidance of BLI, was implemented in vivo for mouse brain tumors. The mapping relationship between semi-quantitative BLI and the laser ablation path was built through the quantitative tumor burden. The mapping was reflected through coupled ablated path planning. The BLI quantitatively and qualitatively evaluated treatment using laser ablation with the appropriate laser parameters and laser-tissue parameters. These parameters were measured after treatment. Furthermore, histopathological analysis of the brain tissue was conducted to compare the TPM images before and after laser ablation and to evaluate the results of in vivo laser ablation. The local recurrences were measured with three separate cohorts. The weights of all of the mice were measured during the experiment. Results: Our in vivo BLI data show that the tumor cell numbers were significantly attenuated after treatment with the optical theranostics platform, and the delineation of GBM margins had clear views to guide the laser resection; the fluorescence intensity in vivo of GBMs quantitatively analyzed the rapid progression of GBMs. The laser-tissue parameters under guidance of multimodality imaging ranged between 1.0 mm and 0.1 mm. The accuracy of the laser ablation reached a submillimeter level, and the resection ratio reached more than 99% under the guidance of BLI. The histopathological sections were compared to TPM images, and the results demonstrated that these images highly coincided. The weight index and local recurrence results demonstrated that the therapeutic effect of the optical theranostics platform was significant. Conclusion: We propose an optical multimodality imaging-guided laser ablation theranostics platform for the treatment of GBMs in an intravital mouse model. The experimental results demonstrated that the integration of multimodality imaging can precisely guide laser ablation for the treatment of GBMs. This preclinical research provides a possibility for the precision treatment of GBMs. The study also provides some theoretical support for clinical research.
format Online
Article
Text
id pubmed-6096384
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-60963842018-08-20 Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden Fan, Yingwei Sun, Yu Chang, Wei Zhang, Xinran Tang, Jie Zhang, Liwei Liao, Hongen Theranostics Research Paper Brain tumor delineation and treatment are the main concerns of neurosurgeons in neurosurgical operations. Bridging the gap between imaging/diagnosis and treatment will provide great convenience for neurosurgeons. Here, we developed an optical theranostics platform that helps to delineate the boundary and quantitatively analyze glioblastoma multiforms (GBMs) with bioluminescence imaging (BLI) to guide laser ablation, and we imaged the GBM cells with two-photon microscopy (TPM) to visualize the laser ablation zone in vivo. Methods: Laser ablation, using the method of coupled ablated path planning with the guidance of BLI, was implemented in vivo for mouse brain tumors. The mapping relationship between semi-quantitative BLI and the laser ablation path was built through the quantitative tumor burden. The mapping was reflected through coupled ablated path planning. The BLI quantitatively and qualitatively evaluated treatment using laser ablation with the appropriate laser parameters and laser-tissue parameters. These parameters were measured after treatment. Furthermore, histopathological analysis of the brain tissue was conducted to compare the TPM images before and after laser ablation and to evaluate the results of in vivo laser ablation. The local recurrences were measured with three separate cohorts. The weights of all of the mice were measured during the experiment. Results: Our in vivo BLI data show that the tumor cell numbers were significantly attenuated after treatment with the optical theranostics platform, and the delineation of GBM margins had clear views to guide the laser resection; the fluorescence intensity in vivo of GBMs quantitatively analyzed the rapid progression of GBMs. The laser-tissue parameters under guidance of multimodality imaging ranged between 1.0 mm and 0.1 mm. The accuracy of the laser ablation reached a submillimeter level, and the resection ratio reached more than 99% under the guidance of BLI. The histopathological sections were compared to TPM images, and the results demonstrated that these images highly coincided. The weight index and local recurrence results demonstrated that the therapeutic effect of the optical theranostics platform was significant. Conclusion: We propose an optical multimodality imaging-guided laser ablation theranostics platform for the treatment of GBMs in an intravital mouse model. The experimental results demonstrated that the integration of multimodality imaging can precisely guide laser ablation for the treatment of GBMs. This preclinical research provides a possibility for the precision treatment of GBMs. The study also provides some theoretical support for clinical research. Ivyspring International Publisher 2018-07-16 /pmc/articles/PMC6096384/ /pubmed/30128037 http://dx.doi.org/10.7150/thno.25357 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Fan, Yingwei
Sun, Yu
Chang, Wei
Zhang, Xinran
Tang, Jie
Zhang, Liwei
Liao, Hongen
Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden
title Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden
title_full Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden
title_fullStr Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden
title_full_unstemmed Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden
title_short Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden
title_sort bioluminescence imaging and two-photon microscopy guided laser ablation of gbm decreases tumor burden
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096384/
https://www.ncbi.nlm.nih.gov/pubmed/30128037
http://dx.doi.org/10.7150/thno.25357
work_keys_str_mv AT fanyingwei bioluminescenceimagingandtwophotonmicroscopyguidedlaserablationofgbmdecreasestumorburden
AT sunyu bioluminescenceimagingandtwophotonmicroscopyguidedlaserablationofgbmdecreasestumorburden
AT changwei bioluminescenceimagingandtwophotonmicroscopyguidedlaserablationofgbmdecreasestumorburden
AT zhangxinran bioluminescenceimagingandtwophotonmicroscopyguidedlaserablationofgbmdecreasestumorburden
AT tangjie bioluminescenceimagingandtwophotonmicroscopyguidedlaserablationofgbmdecreasestumorburden
AT zhangliwei bioluminescenceimagingandtwophotonmicroscopyguidedlaserablationofgbmdecreasestumorburden
AT liaohongen bioluminescenceimagingandtwophotonmicroscopyguidedlaserablationofgbmdecreasestumorburden