Cargando…

Kinetic-Energy Density-Functional Theory on a Lattice

[Image: see text] We present a kinetic-energy density-functional theory and the corresponding kinetic-energy Kohn–Sham (keKS) scheme on a lattice and show that, by including more observables explicitly in a density-functional approach, already simple approximation strategies lead to very accurate re...

Descripción completa

Detalles Bibliográficos
Autores principales: Theophilou, Iris, Buchholz, Florian, Eich, F. G., Ruggenthaler, Michael, Rubio, Angel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096452/
https://www.ncbi.nlm.nih.gov/pubmed/29969552
http://dx.doi.org/10.1021/acs.jctc.8b00292
Descripción
Sumario:[Image: see text] We present a kinetic-energy density-functional theory and the corresponding kinetic-energy Kohn–Sham (keKS) scheme on a lattice and show that, by including more observables explicitly in a density-functional approach, already simple approximation strategies lead to very accurate results. Here, we promote the kinetic-energy density to a fundamental variable alongside the density and show for specific cases (analytically and numerically) that there is a one-to-one correspondence between the external pair of on-site potential and site-dependent hopping and the internal pair of density and kinetic-energy density. On the basis of this mapping, we establish two unknown effective fields, the mean-field exchange-correlation potential and the mean-field exchange-correlation hopping, which force the keKS system to generate the same kinetic-energy density and density as the fully interacting one. We show, by a decomposition based on the equations of motions for the density and the kinetic-energy density, that we can construct simple orbital-dependent functionals that outperform the corresponding exact-exchange Kohn–Sham (KS) approximation of standard density-functional theory. We do so by considering the exact KS and keKS systems and comparing the unknown correlation contributions as well as by comparing self-consistent calculations based on the mean-field exchange (for the effective potential) and a uniform (for the effective hopping) approximation for the keKS and the exact-exchange approximation for the KS system, respectively.