Cargando…
Electron diffraction data processing with DIALS
Electron diffraction is a relatively novel alternative to X-ray crystallography for the structure determination of macromolecules from three-dimensional nanometre-sized crystals. The continuous-rotation method of data collection has been adapted for the electron microscope. However, there are import...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096487/ https://www.ncbi.nlm.nih.gov/pubmed/29872002 http://dx.doi.org/10.1107/S2059798318007726 |
_version_ | 1783348110793113600 |
---|---|
author | Clabbers, Max T. B. Gruene, Tim Parkhurst, James M. Abrahams, Jan Pieter Waterman, David G. |
author_facet | Clabbers, Max T. B. Gruene, Tim Parkhurst, James M. Abrahams, Jan Pieter Waterman, David G. |
author_sort | Clabbers, Max T. B. |
collection | PubMed |
description | Electron diffraction is a relatively novel alternative to X-ray crystallography for the structure determination of macromolecules from three-dimensional nanometre-sized crystals. The continuous-rotation method of data collection has been adapted for the electron microscope. However, there are important differences in geometry that must be considered for successful data integration. The wavelength of electrons in a TEM is typically around 40 times shorter than that of X-rays, implying a nearly flat Ewald sphere, and consequently low diffraction angles and a high effective sample-to-detector distance. Nevertheless, the DIALS software package can, with specific adaptations, successfully process continuous-rotation electron diffraction data. Pathologies encountered specifically in electron diffraction make data integration more challenging. Errors can arise from instrumentation, such as beam drift or distorted diffraction patterns from lens imperfections. The diffraction geometry brings additional challenges such as strong correlation between lattice parameters and detector distance. These issues are compounded if calibration is incomplete, leading to uncertainty in experimental geometry, such as the effective detector distance and the rotation rate or direction. Dynamic scattering, absorption, radiation damage and incomplete wedges of data are additional factors that complicate data processing. Here, recent features of DIALS as adapted to electron diffraction processing are shown, including diagnostics for problematic diffraction geometry refinement, refinement of a smoothly varying beam model and corrections for distorted diffraction images. These novel features, combined with the existing tools in DIALS, make data integration and refinement feasible for electron crystallography, even in difficult cases. |
format | Online Article Text |
id | pubmed-6096487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-60964872018-08-24 Electron diffraction data processing with DIALS Clabbers, Max T. B. Gruene, Tim Parkhurst, James M. Abrahams, Jan Pieter Waterman, David G. Acta Crystallogr D Struct Biol Research Papers Electron diffraction is a relatively novel alternative to X-ray crystallography for the structure determination of macromolecules from three-dimensional nanometre-sized crystals. The continuous-rotation method of data collection has been adapted for the electron microscope. However, there are important differences in geometry that must be considered for successful data integration. The wavelength of electrons in a TEM is typically around 40 times shorter than that of X-rays, implying a nearly flat Ewald sphere, and consequently low diffraction angles and a high effective sample-to-detector distance. Nevertheless, the DIALS software package can, with specific adaptations, successfully process continuous-rotation electron diffraction data. Pathologies encountered specifically in electron diffraction make data integration more challenging. Errors can arise from instrumentation, such as beam drift or distorted diffraction patterns from lens imperfections. The diffraction geometry brings additional challenges such as strong correlation between lattice parameters and detector distance. These issues are compounded if calibration is incomplete, leading to uncertainty in experimental geometry, such as the effective detector distance and the rotation rate or direction. Dynamic scattering, absorption, radiation damage and incomplete wedges of data are additional factors that complicate data processing. Here, recent features of DIALS as adapted to electron diffraction processing are shown, including diagnostics for problematic diffraction geometry refinement, refinement of a smoothly varying beam model and corrections for distorted diffraction images. These novel features, combined with the existing tools in DIALS, make data integration and refinement feasible for electron crystallography, even in difficult cases. International Union of Crystallography 2018-05-30 /pmc/articles/PMC6096487/ /pubmed/29872002 http://dx.doi.org/10.1107/S2059798318007726 Text en © Clabbers et al. 2018 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/2.0/uk/ |
spellingShingle | Research Papers Clabbers, Max T. B. Gruene, Tim Parkhurst, James M. Abrahams, Jan Pieter Waterman, David G. Electron diffraction data processing with DIALS |
title | Electron diffraction data processing with DIALS
|
title_full | Electron diffraction data processing with DIALS
|
title_fullStr | Electron diffraction data processing with DIALS
|
title_full_unstemmed | Electron diffraction data processing with DIALS
|
title_short | Electron diffraction data processing with DIALS
|
title_sort | electron diffraction data processing with dials |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096487/ https://www.ncbi.nlm.nih.gov/pubmed/29872002 http://dx.doi.org/10.1107/S2059798318007726 |
work_keys_str_mv | AT clabbersmaxtb electrondiffractiondataprocessingwithdials AT gruenetim electrondiffractiondataprocessingwithdials AT parkhurstjamesm electrondiffractiondataprocessingwithdials AT abrahamsjanpieter electrondiffractiondataprocessingwithdials AT watermandavidg electrondiffractiondataprocessingwithdials |