Cargando…
On the importance of avoiding shortcuts in applying cognitive models to hierarchical data
Psychological experiments often yield data that are hierarchically structured. A number of popular shortcut strategies in cognitive modeling do not properly accommodate this structure and can result in biased conclusions. To gauge the severity of these biases, we conducted a simulation study for a t...
Autores principales: | Boehm, Udo, Marsman, Maarten, Matzke, Dora, Wagenmakers, Eric-Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096647/ https://www.ncbi.nlm.nih.gov/pubmed/29949071 http://dx.doi.org/10.3758/s13428-018-1054-3 |
Ejemplares similares
-
A tutorial on bridge sampling
por: Gronau, Quentin F., et al.
Publicado: (2017) -
A Simple Method for Comparing Complex Models: Bayesian Model Comparison for Hierarchical Multinomial Processing Tree Models Using Warp-III Bridge Sampling
por: Gronau, Quentin F., et al.
Publicado: (2018) -
A Bayesian hierarchical diffusion model decomposition of performance in Approach–Avoidance Tasks
por: Krypotos, Angelos-Miltiadis, et al.
Publicado: (2015) -
Using Bayesian regression to test hypotheses about relationships between parameters and covariates in cognitive models
por: Boehm, Udo, et al.
Publicado: (2017) -
Analytic posteriors for Pearson's correlation coefficient
por: Ly, Alexander, et al.
Publicado: (2017)