Qualitative analysis of activated sludge using FT-IR technique
The ability to measure and control the composition of activated sludge is an important issue, aiming at evaluating the effectiveness of changes occurring in the sludge, what determines its usefulness to treat wastewater. In this research, diffuse reflectance infrared Fourier transform (FTIR–DRIFT) t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096666/ https://www.ncbi.nlm.nih.gov/pubmed/30147228 http://dx.doi.org/10.1007/s11696-018-0514-7 |
_version_ | 1783348147044483072 |
---|---|
author | Kowalski, Michał Kowalska, Katarzyna Wiszniowski, Jarosław Turek-Szytow, Jolanta |
author_facet | Kowalski, Michał Kowalska, Katarzyna Wiszniowski, Jarosław Turek-Szytow, Jolanta |
author_sort | Kowalski, Michał |
collection | PubMed |
description | The ability to measure and control the composition of activated sludge is an important issue, aiming at evaluating the effectiveness of changes occurring in the sludge, what determines its usefulness to treat wastewater. In this research, diffuse reflectance infrared Fourier transform (FTIR–DRIFT) technique was used, which relies on measuring the reflectance of the powdered substance’s surface layer and capturing spectra in range of infrared wave. First, spectra correlation table of the substances mostly occurring in wastewater was developed to assess the main components of the tested samples of activated sludge. The simplest compounds containing functional groups characteristic for particular chemical classes were chosen: peptides (peptone and albumin), fats (glycerin and fatty acids), carbohydrates (glucose and sucrose), nitrogen compounds (NaNO(3) and NH(4)SO(4)), sulfur compounds (Na(2)SO(4) and Na(2)S(2)O(3)), silicate, etc. The spectra of those substances were captured and characteristic absorption bands for respective bonds in the function groups were assigned. Second, samples of activated sludge from lab-scale membrane bioreactors (MBRs), which purifies petroleum wastewater, were taken. Samples were properly prepared (lyophilization and homogenization) and their spectra were captured. During spectra analysis, previously developed correlation table was used. In obtained spectra of activated sludge, absorption bonds characteristic for amides, peptides, carbohydrates, fats, and aliphatic was identified. The spectra profile of the sludge sample from MBR feed with petroleum wastewater was slightly different from the control MBR sample’s spectra. Intensity of bands in the area characteristic for aliphatic compounds and phenols was clearly higher. This study proves the usefulness of FT-IR technique to observe changes in the chemical composition of activated sludge. |
format | Online Article Text |
id | pubmed-6096666 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-60966662018-08-24 Qualitative analysis of activated sludge using FT-IR technique Kowalski, Michał Kowalska, Katarzyna Wiszniowski, Jarosław Turek-Szytow, Jolanta Chem Zvesti Original Paper The ability to measure and control the composition of activated sludge is an important issue, aiming at evaluating the effectiveness of changes occurring in the sludge, what determines its usefulness to treat wastewater. In this research, diffuse reflectance infrared Fourier transform (FTIR–DRIFT) technique was used, which relies on measuring the reflectance of the powdered substance’s surface layer and capturing spectra in range of infrared wave. First, spectra correlation table of the substances mostly occurring in wastewater was developed to assess the main components of the tested samples of activated sludge. The simplest compounds containing functional groups characteristic for particular chemical classes were chosen: peptides (peptone and albumin), fats (glycerin and fatty acids), carbohydrates (glucose and sucrose), nitrogen compounds (NaNO(3) and NH(4)SO(4)), sulfur compounds (Na(2)SO(4) and Na(2)S(2)O(3)), silicate, etc. The spectra of those substances were captured and characteristic absorption bands for respective bonds in the function groups were assigned. Second, samples of activated sludge from lab-scale membrane bioreactors (MBRs), which purifies petroleum wastewater, were taken. Samples were properly prepared (lyophilization and homogenization) and their spectra were captured. During spectra analysis, previously developed correlation table was used. In obtained spectra of activated sludge, absorption bonds characteristic for amides, peptides, carbohydrates, fats, and aliphatic was identified. The spectra profile of the sludge sample from MBR feed with petroleum wastewater was slightly different from the control MBR sample’s spectra. Intensity of bands in the area characteristic for aliphatic compounds and phenols was clearly higher. This study proves the usefulness of FT-IR technique to observe changes in the chemical composition of activated sludge. Springer International Publishing 2018-06-09 2018 /pmc/articles/PMC6096666/ /pubmed/30147228 http://dx.doi.org/10.1007/s11696-018-0514-7 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Paper Kowalski, Michał Kowalska, Katarzyna Wiszniowski, Jarosław Turek-Szytow, Jolanta Qualitative analysis of activated sludge using FT-IR technique |
title | Qualitative analysis of activated sludge using FT-IR technique |
title_full | Qualitative analysis of activated sludge using FT-IR technique |
title_fullStr | Qualitative analysis of activated sludge using FT-IR technique |
title_full_unstemmed | Qualitative analysis of activated sludge using FT-IR technique |
title_short | Qualitative analysis of activated sludge using FT-IR technique |
title_sort | qualitative analysis of activated sludge using ft-ir technique |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096666/ https://www.ncbi.nlm.nih.gov/pubmed/30147228 http://dx.doi.org/10.1007/s11696-018-0514-7 |
work_keys_str_mv | AT kowalskimichał qualitativeanalysisofactivatedsludgeusingftirtechnique AT kowalskakatarzyna qualitativeanalysisofactivatedsludgeusingftirtechnique AT wiszniowskijarosław qualitativeanalysisofactivatedsludgeusingftirtechnique AT turekszytowjolanta qualitativeanalysisofactivatedsludgeusingftirtechnique |