Cargando…
One- vs two-phase extraction: re-evaluation of sample preparation procedures for untargeted lipidomics in plasma samples
Lipidomics is a rapidly developing field in modern biomedical research. While LC-MS systems are able to detect most of the known lipid classes in a biological matrix, there is no single technique able to extract all of them simultaneously. In comparison with two-phase extractions, one-phase extracti...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096717/ https://www.ncbi.nlm.nih.gov/pubmed/29968103 http://dx.doi.org/10.1007/s00216-018-1200-x |
Sumario: | Lipidomics is a rapidly developing field in modern biomedical research. While LC-MS systems are able to detect most of the known lipid classes in a biological matrix, there is no single technique able to extract all of them simultaneously. In comparison with two-phase extractions, one-phase extraction systems are of particular interest, since they decrease the complexity of the experimental procedure. By using an untargeted lipidomics approach, we explored the differences/similarities between the most commonly used two-phase extraction systems (Folch, Bligh and Dyer, and MTBE) and one of the more recently introduced one-phase extraction systems for lipid analysis based on the MMC solvent mixture (MeOH/MTBE/CHCl(3)). The four extraction methods were evaluated and thoroughly compared against a pooled extract that qualitatively and quantitatively represents the average of the combined extractions. Our results show that the lipid profile obtained with the MMC system displayed the highest similarity to the pooled extract, indicating that it was most representative of the lipidome in the original sample. Furthermore, it showed better extraction efficiencies for moderate and highly apolar lipid species in comparison with the Folch, Bligh and Dyer, and MTBE extraction systems. Finally, the technical simplicity of the MMC procedure makes this solvent system highly suitable for automated, untargeted lipidomics analysis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00216-018-1200-x) contains supplementary material, which is available to authorized users. |
---|