Cargando…

Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease

The herpes simplex virus 1 (HSV-1) virion host shutoff (vhs) protein is an endoribonuclease that binds to the cellular translation initiation machinery and degrades associated mRNAs, resulting in the shutoff of host protein synthesis. Hence, its unrestrained activity is considered lethal, and it has...

Descripción completa

Detalles Bibliográficos
Autores principales: Elliott, Gillian, Pheasant, Kathleen, Ebert-Keel, Katja, Stylianou, Julianna, Franklyn, Ashley, Jones, Juliet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096803/
https://www.ncbi.nlm.nih.gov/pubmed/29925667
http://dx.doi.org/10.1128/JVI.00818-18
_version_ 1783348175838380032
author Elliott, Gillian
Pheasant, Kathleen
Ebert-Keel, Katja
Stylianou, Julianna
Franklyn, Ashley
Jones, Juliet
author_facet Elliott, Gillian
Pheasant, Kathleen
Ebert-Keel, Katja
Stylianou, Julianna
Franklyn, Ashley
Jones, Juliet
author_sort Elliott, Gillian
collection PubMed
description The herpes simplex virus 1 (HSV-1) virion host shutoff (vhs) protein is an endoribonuclease that binds to the cellular translation initiation machinery and degrades associated mRNAs, resulting in the shutoff of host protein synthesis. Hence, its unrestrained activity is considered lethal, and it has been proposed that vhs is regulated by two other virus proteins, VP22 and VP16. We have found that during infection, translation of vhs requires VP22 but not the VP22-VP16 complex. Moreover, in the absence of VP22, vhs is not overactive against cellular or viral transcripts. In transfected cells, vhs was also poorly translated, correlating with the aberrant localization of its mRNA. Counterintuitively, vhs mRNA was predominantly nuclear in cells where vhs protein was detected. Likewise, transcripts from cotransfected plasmids were also retained in the same nuclei where vhs mRNA was located, while poly(A) binding protein (PABP) was relocalized to the nucleus in a vhs-dependent manner, implying a general block to mRNA export. Coexpression of VP16 and VP22 rescued the cytoplasmic localization of vhs mRNA but failed to rescue vhs translation. We identified a 230-nucleotide sequence in the 5′ region of vhs that blocked its translation and, when transferred to a heterologous green fluorescent protein transcript, reduced translation without altering mRNA levels or localization. We propose that expression of vhs is tightly regulated by a combination of inherent untranslatability and autoinduced nuclear retention of its mRNA that results in a negative feedback loop, with nuclear retention but not translation of vhs mRNA being the target of rescue by the vhs-VP16-VP22 complex. IMPORTANCE A myriad of gene expression strategies has been discovered through studies carried out on viruses. This report concerns the regulation of the HSV-1 vhs endoribonuclease, a virus factor that is important for counteracting host antiviral responses by degrading their mRNAs but that must be regulated during infection to ensure that it does not act against and inhibit the virus itself. We show that regulation of vhs involves multifaceted posttranscriptional cellular and viral processes, including aberrant mRNA localization and a novel, autoregulated negative feedback loop to target its own and coexpressed mRNAs for nuclear retention, an activity that is relieved by coexpression of two other virus proteins, VP22 and VP16. These studies reveal the interplay of strategies by which multiple virus-encoded factors coordinate gene expression at the time that they are needed. These findings are broadly relevant to both virus and cellular gene expression.
format Online
Article
Text
id pubmed-6096803
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-60968032018-08-24 Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease Elliott, Gillian Pheasant, Kathleen Ebert-Keel, Katja Stylianou, Julianna Franklyn, Ashley Jones, Juliet J Virol Virus-Cell Interactions The herpes simplex virus 1 (HSV-1) virion host shutoff (vhs) protein is an endoribonuclease that binds to the cellular translation initiation machinery and degrades associated mRNAs, resulting in the shutoff of host protein synthesis. Hence, its unrestrained activity is considered lethal, and it has been proposed that vhs is regulated by two other virus proteins, VP22 and VP16. We have found that during infection, translation of vhs requires VP22 but not the VP22-VP16 complex. Moreover, in the absence of VP22, vhs is not overactive against cellular or viral transcripts. In transfected cells, vhs was also poorly translated, correlating with the aberrant localization of its mRNA. Counterintuitively, vhs mRNA was predominantly nuclear in cells where vhs protein was detected. Likewise, transcripts from cotransfected plasmids were also retained in the same nuclei where vhs mRNA was located, while poly(A) binding protein (PABP) was relocalized to the nucleus in a vhs-dependent manner, implying a general block to mRNA export. Coexpression of VP16 and VP22 rescued the cytoplasmic localization of vhs mRNA but failed to rescue vhs translation. We identified a 230-nucleotide sequence in the 5′ region of vhs that blocked its translation and, when transferred to a heterologous green fluorescent protein transcript, reduced translation without altering mRNA levels or localization. We propose that expression of vhs is tightly regulated by a combination of inherent untranslatability and autoinduced nuclear retention of its mRNA that results in a negative feedback loop, with nuclear retention but not translation of vhs mRNA being the target of rescue by the vhs-VP16-VP22 complex. IMPORTANCE A myriad of gene expression strategies has been discovered through studies carried out on viruses. This report concerns the regulation of the HSV-1 vhs endoribonuclease, a virus factor that is important for counteracting host antiviral responses by degrading their mRNAs but that must be regulated during infection to ensure that it does not act against and inhibit the virus itself. We show that regulation of vhs involves multifaceted posttranscriptional cellular and viral processes, including aberrant mRNA localization and a novel, autoregulated negative feedback loop to target its own and coexpressed mRNAs for nuclear retention, an activity that is relieved by coexpression of two other virus proteins, VP22 and VP16. These studies reveal the interplay of strategies by which multiple virus-encoded factors coordinate gene expression at the time that they are needed. These findings are broadly relevant to both virus and cellular gene expression. American Society for Microbiology 2018-08-16 /pmc/articles/PMC6096803/ /pubmed/29925667 http://dx.doi.org/10.1128/JVI.00818-18 Text en Copyright © 2018 Elliott et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Virus-Cell Interactions
Elliott, Gillian
Pheasant, Kathleen
Ebert-Keel, Katja
Stylianou, Julianna
Franklyn, Ashley
Jones, Juliet
Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease
title Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease
title_full Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease
title_fullStr Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease
title_full_unstemmed Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease
title_short Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease
title_sort multiple posttranscriptional strategies to regulate the herpes simplex virus 1 vhs endoribonuclease
topic Virus-Cell Interactions
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096803/
https://www.ncbi.nlm.nih.gov/pubmed/29925667
http://dx.doi.org/10.1128/JVI.00818-18
work_keys_str_mv AT elliottgillian multipleposttranscriptionalstrategiestoregulatetheherpessimplexvirus1vhsendoribonuclease
AT pheasantkathleen multipleposttranscriptionalstrategiestoregulatetheherpessimplexvirus1vhsendoribonuclease
AT ebertkeelkatja multipleposttranscriptionalstrategiestoregulatetheherpessimplexvirus1vhsendoribonuclease
AT stylianoujulianna multipleposttranscriptionalstrategiestoregulatetheherpessimplexvirus1vhsendoribonuclease
AT franklynashley multipleposttranscriptionalstrategiestoregulatetheherpessimplexvirus1vhsendoribonuclease
AT jonesjuliet multipleposttranscriptionalstrategiestoregulatetheherpessimplexvirus1vhsendoribonuclease