Cargando…
Quantitative surface field analysis: learning causal models to predict ligand binding affinity and pose
We introduce the QuanSA method for inducing physically meaningful field-based models of ligand binding pockets based on structure-activity data alone. The method is closely related to the QMOD approach, substituting a learned scoring field for a pocket constructed of molecular fragments. The problem...
Autores principales: | Cleves, Ann E., Jain, Ajay N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096883/ https://www.ncbi.nlm.nih.gov/pubmed/29934750 http://dx.doi.org/10.1007/s10822-018-0126-x |
Ejemplares similares
-
Electrostatic-field and surface-shape similarity for virtual screening and pose prediction
por: Cleves, Ann E., et al.
Publicado: (2019) -
A structure-guided approach for protein pocket modeling and affinity prediction
por: Varela, Rocco, et al.
Publicado: (2013) -
The impact of cross-docked poses on performance of machine learning classifier for protein–ligand binding pose prediction
por: Shen, Chao, et al.
Publicado: (2021) -
A reinforcement learning approach for protein–ligand binding pose prediction
por: Wang, Chenran, et al.
Publicado: (2022) -
Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock
por: Cleves, Ann E., et al.
Publicado: (2015)