Cargando…
Machine-learning-derived classifier predicts absence of persistent pain after breast cancer surgery with high accuracy
BACKGROUND: Prevention of persistent pain following breast cancer surgery, via early identification of patients at high risk, is a clinical need. Supervised machine-learning was used to identify parameters that predict persistence of significant pain. METHODS: Over 500 demographic, clinical and psyc...
Autores principales: | Lötsch, Jörn, Sipilä, Reetta, Tasmuth, Tiina, Kringel, Dario, Estlander, Ann-Mari, Meretoja, Tuomo, Kalso, Eija, Ultsch, Alfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096884/ https://www.ncbi.nlm.nih.gov/pubmed/29876695 http://dx.doi.org/10.1007/s10549-018-4841-8 |
Ejemplares similares
-
Does expecting more pain make it more intense? Factors associated with the first week pain trajectories after breast cancer surgery
por: Sipilä, Reetta M., et al.
Publicado: (2017) -
Machine-learned analysis of global and glial/opioid intersection–related DNA methylation in patients with persistent pain after breast cancer surgery
por: Kringel, Dario, et al.
Publicado: (2019) -
Development of a screening instrument for risk factors of persistent pain after breast cancer surgery
por: Sipilä, R, et al.
Publicado: (2012) -
Development of an AmpliSeq(TM) Panel for Next-Generation Sequencing of a Set of Genetic Predictors of Persisting Pain
por: Kringel, Dario, et al.
Publicado: (2018) -
Machine-learned identification of psychological subgroups with relation to pain interference in patients after breast cancer treatments
por: Sipilä, Reetta, et al.
Publicado: (2020)