Cargando…
Convergence rate for the moving least-squares learning with dependent sampling
We consider the moving least-squares (MLS) method by the regression learning framework under the assumption that the sampling process satisfies the α-mixing condition. We conduct the rigorous error analysis by using the probability inequalities for the dependent samples in the error estimates. When...
Autores principales: | Guo, Qin, Ye, Peixin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096915/ https://www.ncbi.nlm.nih.gov/pubmed/30839554 http://dx.doi.org/10.1186/s13660-018-1794-8 |
Ejemplares similares
Ejemplares similares
-
Error analysis for [Formula: see text] -coefficient regularized moving least-square regression
por: Guo, Qin, et al.
Publicado: (2018) -
Distributed weighted least-squares estimation with fast convergence for large-scale systems()
por: Marelli, Damián Edgardo, et al.
Publicado: (2015) -
Minibatch Recursive Least Squares Q-Learning
por: Zhang, Chunyuan, et al.
Publicado: (2021) -
Fast Algorithms for Structured Least Squares and Total Least Squares Problems
por: Kalsi, Anoop, et al.
Publicado: (2006) -
The Recovery of Weak Impulsive Signals Based on Stochastic Resonance and Moving Least Squares Fitting
por: Jiang, Kuosheng., et al.
Publicado: (2014)