Cargando…

Approximation properties of λ-Kantorovich operators

In the present paper, we study a new type of Bernstein operators depending on the parameter [Formula: see text] . The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Voronovskaja type theorem by means of Ditzian–Totik modulus of smoothness...

Descripción completa

Detalles Bibliográficos
Autores principales: Acu, Ana-Maria, Manav, Nesibe, Sofonea, Daniel Florin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096926/
https://www.ncbi.nlm.nih.gov/pubmed/30839580
http://dx.doi.org/10.1186/s13660-018-1795-7
Descripción
Sumario:In the present paper, we study a new type of Bernstein operators depending on the parameter [Formula: see text] . The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Voronovskaja type theorem by means of Ditzian–Totik modulus of smoothness is proved. Also, a Grüss–Voronovskaja type theorem for λ-Kantorovich operators is provided. Some numerical examples which show the relevance of the results are given.