Cargando…
Approximation properties of λ-Kantorovich operators
In the present paper, we study a new type of Bernstein operators depending on the parameter [Formula: see text] . The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Voronovskaja type theorem by means of Ditzian–Totik modulus of smoothness...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096926/ https://www.ncbi.nlm.nih.gov/pubmed/30839580 http://dx.doi.org/10.1186/s13660-018-1795-7 |
Sumario: | In the present paper, we study a new type of Bernstein operators depending on the parameter [Formula: see text] . The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Voronovskaja type theorem by means of Ditzian–Totik modulus of smoothness is proved. Also, a Grüss–Voronovskaja type theorem for λ-Kantorovich operators is provided. Some numerical examples which show the relevance of the results are given. |
---|