Cargando…
Coercivity Modulation in Fe–Cu Pseudo‐Ordered Porous Thin Films Controlled by an Applied Voltage: A Sustainable, Energy‐Efficient Approach to Magnetoelectrically Driven Materials
Fe–Cu films with pseudo‐ordered, hierarchical porosity are prepared by a simple, two‐step procedure that combines colloidal templating (using sub‐micrometer‐sized polystyrene spheres) with electrodeposition. The porosity degree of these films, estimated by ellipsometry measurements, is as high as 65...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096991/ https://www.ncbi.nlm.nih.gov/pubmed/30128259 http://dx.doi.org/10.1002/advs.201800499 |
Sumario: | Fe–Cu films with pseudo‐ordered, hierarchical porosity are prepared by a simple, two‐step procedure that combines colloidal templating (using sub‐micrometer‐sized polystyrene spheres) with electrodeposition. The porosity degree of these films, estimated by ellipsometry measurements, is as high as 65%. The resulting magnetic properties can be controlled at room temperature using an applied electric field generated through an electric double layer in an anhydrous electrolyte. This material shows a remarkable 25% voltage‐driven coercivity reduction upon application of negative voltages, with excellent reversibility when a positive voltage is applied, and a short recovery time. The pronounced reduction of coercivity is mainly ascribed to electrostatic charge accumulation at the surface of the porous alloy, which occurs over a large fraction of the electrodeposited material due to its high surface‐area‐to‐volume ratio. The emergence of a hierarchical porosity is found to be crucial because it promotes the infiltration of the electrolyte into the structure of the film. The observed effects make this material a promising candidate to boost energy efficiency in magnetoelectrically actuated devices. |
---|