Cargando…
Multiplicity and asymptotic behavior of solutions for Kirchhoff type equations involving the Hardy–Sobolev exponent and singular nonlinearity
In this paper, we study a class of critical elliptic problems of Kirchhoff type: [Formula: see text] where [Formula: see text] , [Formula: see text] , [Formula: see text] , and [Formula: see text] are constants and [Formula: see text] is the Hardy–Sobolev exponent in [Formula: see text] . For a suit...
Autor principal: | Shen, Liejun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097032/ https://www.ncbi.nlm.nih.gov/pubmed/30839566 http://dx.doi.org/10.1186/s13660-018-1806-8 |
Ejemplares similares
-
Multiplicity and asymptotic behavior of solutions to a class of Kirchhoff-type equations involving the fractional p-Laplacian
por: Shen, Liejun
Publicado: (2018) -
Solutions for the quasi-linear elliptic problems involving the critical Sobolev exponent
por: Sang, Yanbin, et al.
Publicado: (2017) -
Lebesgue and Sobolev spaces with variable exponents
por: Diening, Lars, et al.
Publicado: (2011) -
Sobolev and viscosity solutions for fully nonlinear elliptic and parabolic equations
por: Krylov, N V
Publicado: (2018) -
The refinement and generalization of Hardy’s inequality in Sobolev space
por: Xue, Xiaomin, et al.
Publicado: (2018)