Cargando…
Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots
Colloidal heterostructured quantum dots (QDs) are promising candidates for next‐generation optoelectronic devices. In particular, “giant” core/shell QDs (g‐QDs) can be engineered to exhibit outstanding optical properties and high chemical/photostability for the fabrication of high‐performance optoel...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097093/ https://www.ncbi.nlm.nih.gov/pubmed/30128262 http://dx.doi.org/10.1002/advs.201800656 |
_version_ | 1783348235712069632 |
---|---|
author | Tong, Xin Kong, Xiang‐Tian Wang, Chao Zhou, Yufeng Navarro‐Pardo, Fabiola Barba, David Ma, Dongling Sun, Shuhui Govorov, Alexander O. Zhao, Haiguang Wang, Zhiming M. Rosei, Federico |
author_facet | Tong, Xin Kong, Xiang‐Tian Wang, Chao Zhou, Yufeng Navarro‐Pardo, Fabiola Barba, David Ma, Dongling Sun, Shuhui Govorov, Alexander O. Zhao, Haiguang Wang, Zhiming M. Rosei, Federico |
author_sort | Tong, Xin |
collection | PubMed |
description | Colloidal heterostructured quantum dots (QDs) are promising candidates for next‐generation optoelectronic devices. In particular, “giant” core/shell QDs (g‐QDs) can be engineered to exhibit outstanding optical properties and high chemical/photostability for the fabrication of high‐performance optoelectronic devices. Here, the synthesis of heterostructured CuInSe(x)S(2−) (x) (CISeS)/CdSeS/CdS g‐QDs with pyramidal shape by using a facile two‐step method is reported. The CdSeS/CdS shell is demonstrated to have a pure zinc blend phase other than typical wurtzite phase. The as‐obtained heterostructured g‐QDs exhibit near‐infrared photoluminescence (PL) emission (≈830 nm) and very long PL lifetime (in the microsecond range). The pyramidal g‐QDs exhibit a quasi‐type II band structure with spatial separation of electron–hole wave function, suggesting an efficient exciton extraction and transport, which is consistent with theoretical calculations. These heterostructured g‐QDs are used as light harvesters to fabricate a photoelectrochemical cell, exhibiting a saturated photocurrent density as high as ≈5.5 mA cm(−2) and good stability under 1 sun illumination (AM 1.5 G, 100 mW cm(−2)). These results are an important step toward using heterostructured pyramidal g‐QDs for prospective applications in solar technologies. |
format | Online Article Text |
id | pubmed-6097093 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60970932018-08-20 Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots Tong, Xin Kong, Xiang‐Tian Wang, Chao Zhou, Yufeng Navarro‐Pardo, Fabiola Barba, David Ma, Dongling Sun, Shuhui Govorov, Alexander O. Zhao, Haiguang Wang, Zhiming M. Rosei, Federico Adv Sci (Weinh) Full Papers Colloidal heterostructured quantum dots (QDs) are promising candidates for next‐generation optoelectronic devices. In particular, “giant” core/shell QDs (g‐QDs) can be engineered to exhibit outstanding optical properties and high chemical/photostability for the fabrication of high‐performance optoelectronic devices. Here, the synthesis of heterostructured CuInSe(x)S(2−) (x) (CISeS)/CdSeS/CdS g‐QDs with pyramidal shape by using a facile two‐step method is reported. The CdSeS/CdS shell is demonstrated to have a pure zinc blend phase other than typical wurtzite phase. The as‐obtained heterostructured g‐QDs exhibit near‐infrared photoluminescence (PL) emission (≈830 nm) and very long PL lifetime (in the microsecond range). The pyramidal g‐QDs exhibit a quasi‐type II band structure with spatial separation of electron–hole wave function, suggesting an efficient exciton extraction and transport, which is consistent with theoretical calculations. These heterostructured g‐QDs are used as light harvesters to fabricate a photoelectrochemical cell, exhibiting a saturated photocurrent density as high as ≈5.5 mA cm(−2) and good stability under 1 sun illumination (AM 1.5 G, 100 mW cm(−2)). These results are an important step toward using heterostructured pyramidal g‐QDs for prospective applications in solar technologies. John Wiley and Sons Inc. 2018-07-03 /pmc/articles/PMC6097093/ /pubmed/30128262 http://dx.doi.org/10.1002/advs.201800656 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Tong, Xin Kong, Xiang‐Tian Wang, Chao Zhou, Yufeng Navarro‐Pardo, Fabiola Barba, David Ma, Dongling Sun, Shuhui Govorov, Alexander O. Zhao, Haiguang Wang, Zhiming M. Rosei, Federico Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots |
title | Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots |
title_full | Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots |
title_fullStr | Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots |
title_full_unstemmed | Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots |
title_short | Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots |
title_sort | optoelectronic properties in near‐infrared colloidal heterostructured pyramidal “giant” core/shell quantum dots |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097093/ https://www.ncbi.nlm.nih.gov/pubmed/30128262 http://dx.doi.org/10.1002/advs.201800656 |
work_keys_str_mv | AT tongxin optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots AT kongxiangtian optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots AT wangchao optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots AT zhouyufeng optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots AT navarropardofabiola optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots AT barbadavid optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots AT madongling optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots AT sunshuhui optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots AT govorovalexandero optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots AT zhaohaiguang optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots AT wangzhimingm optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots AT roseifederico optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots |