Cargando…

Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots

Colloidal heterostructured quantum dots (QDs) are promising candidates for next‐generation optoelectronic devices. In particular, “giant” core/shell QDs (g‐QDs) can be engineered to exhibit outstanding optical properties and high chemical/photostability for the fabrication of high‐performance optoel...

Descripción completa

Detalles Bibliográficos
Autores principales: Tong, Xin, Kong, Xiang‐Tian, Wang, Chao, Zhou, Yufeng, Navarro‐Pardo, Fabiola, Barba, David, Ma, Dongling, Sun, Shuhui, Govorov, Alexander O., Zhao, Haiguang, Wang, Zhiming M., Rosei, Federico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097093/
https://www.ncbi.nlm.nih.gov/pubmed/30128262
http://dx.doi.org/10.1002/advs.201800656
_version_ 1783348235712069632
author Tong, Xin
Kong, Xiang‐Tian
Wang, Chao
Zhou, Yufeng
Navarro‐Pardo, Fabiola
Barba, David
Ma, Dongling
Sun, Shuhui
Govorov, Alexander O.
Zhao, Haiguang
Wang, Zhiming M.
Rosei, Federico
author_facet Tong, Xin
Kong, Xiang‐Tian
Wang, Chao
Zhou, Yufeng
Navarro‐Pardo, Fabiola
Barba, David
Ma, Dongling
Sun, Shuhui
Govorov, Alexander O.
Zhao, Haiguang
Wang, Zhiming M.
Rosei, Federico
author_sort Tong, Xin
collection PubMed
description Colloidal heterostructured quantum dots (QDs) are promising candidates for next‐generation optoelectronic devices. In particular, “giant” core/shell QDs (g‐QDs) can be engineered to exhibit outstanding optical properties and high chemical/photostability for the fabrication of high‐performance optoelectronic devices. Here, the synthesis of heterostructured CuInSe(x)S(2−) (x) (CISeS)/CdSeS/CdS g‐QDs with pyramidal shape by using a facile two‐step method is reported. The CdSeS/CdS shell is demonstrated to have a pure zinc blend phase other than typical wurtzite phase. The as‐obtained heterostructured g‐QDs exhibit near‐infrared photoluminescence (PL) emission (≈830 nm) and very long PL lifetime (in the microsecond range). The pyramidal g‐QDs exhibit a quasi‐type II band structure with spatial separation of electron–hole wave function, suggesting an efficient exciton extraction and transport, which is consistent with theoretical calculations. These heterostructured g‐QDs are used as light harvesters to fabricate a photoelectrochemical cell, exhibiting a saturated photocurrent density as high as ≈5.5 mA cm(−2) and good stability under 1 sun illumination (AM 1.5 G, 100 mW cm(−2)). These results are an important step toward using heterostructured pyramidal g‐QDs for prospective applications in solar technologies.
format Online
Article
Text
id pubmed-6097093
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-60970932018-08-20 Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots Tong, Xin Kong, Xiang‐Tian Wang, Chao Zhou, Yufeng Navarro‐Pardo, Fabiola Barba, David Ma, Dongling Sun, Shuhui Govorov, Alexander O. Zhao, Haiguang Wang, Zhiming M. Rosei, Federico Adv Sci (Weinh) Full Papers Colloidal heterostructured quantum dots (QDs) are promising candidates for next‐generation optoelectronic devices. In particular, “giant” core/shell QDs (g‐QDs) can be engineered to exhibit outstanding optical properties and high chemical/photostability for the fabrication of high‐performance optoelectronic devices. Here, the synthesis of heterostructured CuInSe(x)S(2−) (x) (CISeS)/CdSeS/CdS g‐QDs with pyramidal shape by using a facile two‐step method is reported. The CdSeS/CdS shell is demonstrated to have a pure zinc blend phase other than typical wurtzite phase. The as‐obtained heterostructured g‐QDs exhibit near‐infrared photoluminescence (PL) emission (≈830 nm) and very long PL lifetime (in the microsecond range). The pyramidal g‐QDs exhibit a quasi‐type II band structure with spatial separation of electron–hole wave function, suggesting an efficient exciton extraction and transport, which is consistent with theoretical calculations. These heterostructured g‐QDs are used as light harvesters to fabricate a photoelectrochemical cell, exhibiting a saturated photocurrent density as high as ≈5.5 mA cm(−2) and good stability under 1 sun illumination (AM 1.5 G, 100 mW cm(−2)). These results are an important step toward using heterostructured pyramidal g‐QDs for prospective applications in solar technologies. John Wiley and Sons Inc. 2018-07-03 /pmc/articles/PMC6097093/ /pubmed/30128262 http://dx.doi.org/10.1002/advs.201800656 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Tong, Xin
Kong, Xiang‐Tian
Wang, Chao
Zhou, Yufeng
Navarro‐Pardo, Fabiola
Barba, David
Ma, Dongling
Sun, Shuhui
Govorov, Alexander O.
Zhao, Haiguang
Wang, Zhiming M.
Rosei, Federico
Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots
title Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots
title_full Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots
title_fullStr Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots
title_full_unstemmed Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots
title_short Optoelectronic Properties in Near‐Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots
title_sort optoelectronic properties in near‐infrared colloidal heterostructured pyramidal “giant” core/shell quantum dots
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097093/
https://www.ncbi.nlm.nih.gov/pubmed/30128262
http://dx.doi.org/10.1002/advs.201800656
work_keys_str_mv AT tongxin optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots
AT kongxiangtian optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots
AT wangchao optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots
AT zhouyufeng optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots
AT navarropardofabiola optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots
AT barbadavid optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots
AT madongling optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots
AT sunshuhui optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots
AT govorovalexandero optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots
AT zhaohaiguang optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots
AT wangzhimingm optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots
AT roseifederico optoelectronicpropertiesinnearinfraredcolloidalheterostructuredpyramidalgiantcoreshellquantumdots