Cargando…

FSD-C10 Shows Therapeutic Effects in Suppressing oxidized low-density lipoprotein (ox-LDL)-Induced Human Brain Microvascular Endothelial Cells Apoptosis via Rho-Associated Coiled-Coil Kinase (ROCK)/Mitogen-Activated Protein Kinase (MAPK) Signaling

BACKGROUND: ox-LDL-induced injury of brain microvascular endothelial cells (BMECs) is strongly associated with cerebral vascular diseases such as cerebral arterial atherosclerosis. ROCK inhibitor was proved to be anti-apoptotic and has been used in treating cerebral vascular diseases. Research on th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xin, Mao, Rongyan, Chen, Weiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097139/
https://www.ncbi.nlm.nih.gov/pubmed/30088495
http://dx.doi.org/10.12659/MSM.911481
_version_ 1783348245544566784
author Wang, Xin
Mao, Rongyan
Chen, Weiwei
author_facet Wang, Xin
Mao, Rongyan
Chen, Weiwei
author_sort Wang, Xin
collection PubMed
description BACKGROUND: ox-LDL-induced injury of brain microvascular endothelial cells (BMECs) is strongly associated with cerebral vascular diseases such as cerebral arterial atherosclerosis. ROCK inhibitor was proved to be anti-apoptotic and has been used in treating cerebral vascular diseases. Research on the neuroprotective effects of a novel ROCK inhibitor, FSD-C10, is still limited. The present study investigated the anti-apoptotic effect and underlying molecular mechanism of FSD-C10 in ox-LDL-mediated apoptosis of BMECs. MATERIAL/METHODS: ox-LDL and/or FSD-C10 were used to incubate immortalized human BMECs. MTT assay was used to assess cell viability. Cell apoptosis was evaluated by TUNEL assay. A colorimetric method was used to assess ROCK activity. Western blot analysis was used to examine the expression and phosphorylation levels of proteins. RESULTS: ox-LDL incubation reduced the viability of BMECs by inducing cell apoptosis in a concentration-dependent manner. ROCK activity was also elevated by ox-LDL incubation in BMECs in a concentration-dependent manner. Expression level of Bcl2 was reduced while expression levels of Bax and active caspase3 were increased by ox-LDL treatment in a concentration-dependent manner. ox-LDL also increased the phosphorylation levels of p38, JNK, and ERK1/2 in a concentration-dependent manner. FSD-C10 treatment increased the cell viability by reducing apoptosis of BMECs exposed to ox-LDL. Moreover, FSD-C10 was found to suppress the phosphorylation levels of p38, JNK, and ERK1/2 and the expression levels of Bax and active caspase3 in ox-LDL treated BMECs. CONCLUSIONS: FSD-C10 increases cell viability in ox-LDL-treated BMECs by reducing cell apoptosis. ROCK/MAPKs-mediated apoptosis appears to be the underlying molecular mechanism.
format Online
Article
Text
id pubmed-6097139
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher International Scientific Literature, Inc.
record_format MEDLINE/PubMed
spelling pubmed-60971392018-08-20 FSD-C10 Shows Therapeutic Effects in Suppressing oxidized low-density lipoprotein (ox-LDL)-Induced Human Brain Microvascular Endothelial Cells Apoptosis via Rho-Associated Coiled-Coil Kinase (ROCK)/Mitogen-Activated Protein Kinase (MAPK) Signaling Wang, Xin Mao, Rongyan Chen, Weiwei Med Sci Monit Lab/In Vitro Research BACKGROUND: ox-LDL-induced injury of brain microvascular endothelial cells (BMECs) is strongly associated with cerebral vascular diseases such as cerebral arterial atherosclerosis. ROCK inhibitor was proved to be anti-apoptotic and has been used in treating cerebral vascular diseases. Research on the neuroprotective effects of a novel ROCK inhibitor, FSD-C10, is still limited. The present study investigated the anti-apoptotic effect and underlying molecular mechanism of FSD-C10 in ox-LDL-mediated apoptosis of BMECs. MATERIAL/METHODS: ox-LDL and/or FSD-C10 were used to incubate immortalized human BMECs. MTT assay was used to assess cell viability. Cell apoptosis was evaluated by TUNEL assay. A colorimetric method was used to assess ROCK activity. Western blot analysis was used to examine the expression and phosphorylation levels of proteins. RESULTS: ox-LDL incubation reduced the viability of BMECs by inducing cell apoptosis in a concentration-dependent manner. ROCK activity was also elevated by ox-LDL incubation in BMECs in a concentration-dependent manner. Expression level of Bcl2 was reduced while expression levels of Bax and active caspase3 were increased by ox-LDL treatment in a concentration-dependent manner. ox-LDL also increased the phosphorylation levels of p38, JNK, and ERK1/2 in a concentration-dependent manner. FSD-C10 treatment increased the cell viability by reducing apoptosis of BMECs exposed to ox-LDL. Moreover, FSD-C10 was found to suppress the phosphorylation levels of p38, JNK, and ERK1/2 and the expression levels of Bax and active caspase3 in ox-LDL treated BMECs. CONCLUSIONS: FSD-C10 increases cell viability in ox-LDL-treated BMECs by reducing cell apoptosis. ROCK/MAPKs-mediated apoptosis appears to be the underlying molecular mechanism. International Scientific Literature, Inc. 2018-08-08 /pmc/articles/PMC6097139/ /pubmed/30088495 http://dx.doi.org/10.12659/MSM.911481 Text en © Med Sci Monit, 2018 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Lab/In Vitro Research
Wang, Xin
Mao, Rongyan
Chen, Weiwei
FSD-C10 Shows Therapeutic Effects in Suppressing oxidized low-density lipoprotein (ox-LDL)-Induced Human Brain Microvascular Endothelial Cells Apoptosis via Rho-Associated Coiled-Coil Kinase (ROCK)/Mitogen-Activated Protein Kinase (MAPK) Signaling
title FSD-C10 Shows Therapeutic Effects in Suppressing oxidized low-density lipoprotein (ox-LDL)-Induced Human Brain Microvascular Endothelial Cells Apoptosis via Rho-Associated Coiled-Coil Kinase (ROCK)/Mitogen-Activated Protein Kinase (MAPK) Signaling
title_full FSD-C10 Shows Therapeutic Effects in Suppressing oxidized low-density lipoprotein (ox-LDL)-Induced Human Brain Microvascular Endothelial Cells Apoptosis via Rho-Associated Coiled-Coil Kinase (ROCK)/Mitogen-Activated Protein Kinase (MAPK) Signaling
title_fullStr FSD-C10 Shows Therapeutic Effects in Suppressing oxidized low-density lipoprotein (ox-LDL)-Induced Human Brain Microvascular Endothelial Cells Apoptosis via Rho-Associated Coiled-Coil Kinase (ROCK)/Mitogen-Activated Protein Kinase (MAPK) Signaling
title_full_unstemmed FSD-C10 Shows Therapeutic Effects in Suppressing oxidized low-density lipoprotein (ox-LDL)-Induced Human Brain Microvascular Endothelial Cells Apoptosis via Rho-Associated Coiled-Coil Kinase (ROCK)/Mitogen-Activated Protein Kinase (MAPK) Signaling
title_short FSD-C10 Shows Therapeutic Effects in Suppressing oxidized low-density lipoprotein (ox-LDL)-Induced Human Brain Microvascular Endothelial Cells Apoptosis via Rho-Associated Coiled-Coil Kinase (ROCK)/Mitogen-Activated Protein Kinase (MAPK) Signaling
title_sort fsd-c10 shows therapeutic effects in suppressing oxidized low-density lipoprotein (ox-ldl)-induced human brain microvascular endothelial cells apoptosis via rho-associated coiled-coil kinase (rock)/mitogen-activated protein kinase (mapk) signaling
topic Lab/In Vitro Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097139/
https://www.ncbi.nlm.nih.gov/pubmed/30088495
http://dx.doi.org/10.12659/MSM.911481
work_keys_str_mv AT wangxin fsdc10showstherapeuticeffectsinsuppressingoxidizedlowdensitylipoproteinoxldlinducedhumanbrainmicrovascularendothelialcellsapoptosisviarhoassociatedcoiledcoilkinaserockmitogenactivatedproteinkinasemapksignaling
AT maorongyan fsdc10showstherapeuticeffectsinsuppressingoxidizedlowdensitylipoproteinoxldlinducedhumanbrainmicrovascularendothelialcellsapoptosisviarhoassociatedcoiledcoilkinaserockmitogenactivatedproteinkinasemapksignaling
AT chenweiwei fsdc10showstherapeuticeffectsinsuppressingoxidizedlowdensitylipoproteinoxldlinducedhumanbrainmicrovascularendothelialcellsapoptosisviarhoassociatedcoiledcoilkinaserockmitogenactivatedproteinkinasemapksignaling