Cargando…
Biological classification with RNA-seq data: Can alternatively spliced transcript expression enhance machine learning classifiers?
RNA sequencing (RNA-seq) is becoming a prevalent approach to quantify gene expression and is expected to gain better insights into a number of biological and biomedical questions compared to DNA microarrays. Most importantly, RNA-seq allows us to quantify expression at the gene or transcript levels....
Autores principales: | Johnson, Nathan T., Dhroso, Andi, Hughes, Katelyn J., Korkin, Dmitry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097660/ https://www.ncbi.nlm.nih.gov/pubmed/29941426 http://dx.doi.org/10.1261/rna.062802.117 |
Ejemplares similares
-
A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data
por: Srinivasan, Suhas, et al.
Publicado: (2020) -
Splicing predictions reliably classify different types of alternative splicing
por: Busch, Anke, et al.
Publicado: (2015) -
Genome-wide prediction of bacterial effector candidates across six secretion system types using a feature-based statistical framework
por: Dhroso, Andi, et al.
Publicado: (2018) -
Leveraging transcript quantification for fast computation of alternative splicing profiles
por: Alamancos, Gael P., et al.
Publicado: (2015) -
GOLPH3 modulates expression and alternative splicing of transcription factors associated with endometrial decidualization in human endometrial stromal cells
por: Zhu, Suqin, et al.
Publicado: (2023)