Cargando…
Approximate sparse spectral clustering based on local information maintenance for hyperspectral image classification
Sparse spectral clustering (SSC) has become one of the most popular clustering approaches in recent years. However, its high computational complexity prevents its application to large-scale datasets such as hyperspectral images (HSIs). In this paper, we propose two efficient approximate sparse spect...
Autores principales: | Yan, Qing, Ding, Yun, Zhang, Jing-Jing, Xun, Li-Na, Zheng, Chun-Hou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097666/ https://www.ncbi.nlm.nih.gov/pubmed/30118492 http://dx.doi.org/10.1371/journal.pone.0202161 |
Ejemplares similares
-
Group Sparse Representation Based on Nonlocal Spatial and Local Spectral Similarity for Hyperspectral Imagery Classification
por: Yu, Haoyang, et al.
Publicado: (2018) -
Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
por: Liu, Shuai, et al.
Publicado: (2016) -
Hyperspectral image spectral-spatial classification via weighted Laplacian smoothing constraint-based sparse representation
por: Chen, Eryang, et al.
Publicado: (2021) -
A Robust Sparse Representation Model for Hyperspectral Image Classification †
por: Huang, Shaoguang, et al.
Publicado: (2017) -
Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification
por: Dang, Lanxue, et al.
Publicado: (2022)