Cargando…
Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields
BACKGROUND: In the oral and maxillofacial surgery and dentistry fields, the use of three-dimensional (3D) patient-specific organ models is increasing, which has increased the cost of obtaining them. We developed an environment in our facility in which we can design, fabricate, and use 3D models call...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097791/ https://www.ncbi.nlm.nih.gov/pubmed/30148203 http://dx.doi.org/10.1186/s41205-018-0028-5 |
_version_ | 1783348367086059520 |
---|---|
author | Kamio, Takashi Hayashi, Kamichika Onda, Takeshi Takaki, Takashi Shibahara, Takahiko Yakushiji, Takashi Shibui, Takeo Kato, Hiroshi |
author_facet | Kamio, Takashi Hayashi, Kamichika Onda, Takeshi Takaki, Takashi Shibahara, Takahiko Yakushiji, Takashi Shibui, Takeo Kato, Hiroshi |
author_sort | Kamio, Takashi |
collection | PubMed |
description | BACKGROUND: In the oral and maxillofacial surgery and dentistry fields, the use of three-dimensional (3D) patient-specific organ models is increasing, which has increased the cost of obtaining them. We developed an environment in our facility in which we can design, fabricate, and use 3D models called the “One-stop 3D printing lab”. The lab made it possible to quickly and inexpensively produce the 3D models that are indispensable for oral and maxillofacial surgery. We report our 3D model fabrication environment after determining the dimensional accuracy of the models with different laminating pitches (; layer thickness) after fabricating over 300 3D models. Considerations were made for further reducing modeling cost and model print time. MDCT imaging was performed using a dry human mandible, and 3D CAD data were generated from the DICOM image data. 3D models were fabricated with a fused deposition modeling (FDM) 3D printer MF-2000 (MUTOH) with a laminating pitch of 0.2 mm, 0.3 mm, 0.4 mm, or 0.5 mm. Each 3D model was then subjected to reverse scanning to evaluate the modeling conditions and deformation during modeling. For the 3D image processing system, Volume Extractor 3.0 (i-Plants Systems) and POLYGONALmeister V2 (UEL) were used. For the comparative evaluation of CAD data, spGauge 2014.1 (Armonicos) was used. RESULTS: As the laminating pitch increased, the weight of the 3D model, model print time, and material cost decreased, and no significant reduction in geometric accuracy was observed. CONCLUSIONS: The amount of modeling material used and preparation cost were reduced by increasing the laminating pitch. The “One-stop 3D printing lab” made it possible to produce 3D models daily. The use of 3D models in the oral and maxillofacial surgery and dentistry fields will likely increase, and we expect that low-cost FDM 3D printers that can produce low-cost 3D models will play a significant role. |
format | Online Article Text |
id | pubmed-6097791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-60977912018-08-24 Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields Kamio, Takashi Hayashi, Kamichika Onda, Takeshi Takaki, Takashi Shibahara, Takahiko Yakushiji, Takashi Shibui, Takeo Kato, Hiroshi 3D Print Med Research BACKGROUND: In the oral and maxillofacial surgery and dentistry fields, the use of three-dimensional (3D) patient-specific organ models is increasing, which has increased the cost of obtaining them. We developed an environment in our facility in which we can design, fabricate, and use 3D models called the “One-stop 3D printing lab”. The lab made it possible to quickly and inexpensively produce the 3D models that are indispensable for oral and maxillofacial surgery. We report our 3D model fabrication environment after determining the dimensional accuracy of the models with different laminating pitches (; layer thickness) after fabricating over 300 3D models. Considerations were made for further reducing modeling cost and model print time. MDCT imaging was performed using a dry human mandible, and 3D CAD data were generated from the DICOM image data. 3D models were fabricated with a fused deposition modeling (FDM) 3D printer MF-2000 (MUTOH) with a laminating pitch of 0.2 mm, 0.3 mm, 0.4 mm, or 0.5 mm. Each 3D model was then subjected to reverse scanning to evaluate the modeling conditions and deformation during modeling. For the 3D image processing system, Volume Extractor 3.0 (i-Plants Systems) and POLYGONALmeister V2 (UEL) were used. For the comparative evaluation of CAD data, spGauge 2014.1 (Armonicos) was used. RESULTS: As the laminating pitch increased, the weight of the 3D model, model print time, and material cost decreased, and no significant reduction in geometric accuracy was observed. CONCLUSIONS: The amount of modeling material used and preparation cost were reduced by increasing the laminating pitch. The “One-stop 3D printing lab” made it possible to produce 3D models daily. The use of 3D models in the oral and maxillofacial surgery and dentistry fields will likely increase, and we expect that low-cost FDM 3D printers that can produce low-cost 3D models will play a significant role. Springer International Publishing 2018-08-13 /pmc/articles/PMC6097791/ /pubmed/30148203 http://dx.doi.org/10.1186/s41205-018-0028-5 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Kamio, Takashi Hayashi, Kamichika Onda, Takeshi Takaki, Takashi Shibahara, Takahiko Yakushiji, Takashi Shibui, Takeo Kato, Hiroshi Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields |
title | Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields |
title_full | Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields |
title_fullStr | Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields |
title_full_unstemmed | Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields |
title_short | Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields |
title_sort | utilizing a low-cost desktop 3d printer to develop a “one-stop 3d printing lab” for oral and maxillofacial surgery and dentistry fields |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097791/ https://www.ncbi.nlm.nih.gov/pubmed/30148203 http://dx.doi.org/10.1186/s41205-018-0028-5 |
work_keys_str_mv | AT kamiotakashi utilizingalowcostdesktop3dprintertodevelopaonestop3dprintinglabfororalandmaxillofacialsurgeryanddentistryfields AT hayashikamichika utilizingalowcostdesktop3dprintertodevelopaonestop3dprintinglabfororalandmaxillofacialsurgeryanddentistryfields AT ondatakeshi utilizingalowcostdesktop3dprintertodevelopaonestop3dprintinglabfororalandmaxillofacialsurgeryanddentistryfields AT takakitakashi utilizingalowcostdesktop3dprintertodevelopaonestop3dprintinglabfororalandmaxillofacialsurgeryanddentistryfields AT shibaharatakahiko utilizingalowcostdesktop3dprintertodevelopaonestop3dprintinglabfororalandmaxillofacialsurgeryanddentistryfields AT yakushijitakashi utilizingalowcostdesktop3dprintertodevelopaonestop3dprintinglabfororalandmaxillofacialsurgeryanddentistryfields AT shibuitakeo utilizingalowcostdesktop3dprintertodevelopaonestop3dprintinglabfororalandmaxillofacialsurgeryanddentistryfields AT katohiroshi utilizingalowcostdesktop3dprintertodevelopaonestop3dprintinglabfororalandmaxillofacialsurgeryanddentistryfields |