Cargando…
Complementary iTRAQ-based proteomic and RNA sequencing-based transcriptomic analyses reveal a complex network regulating pomegranate (Punica granatum L.) fruit peel colour
Peel colour is an important factor affecting the marketability of pomegranate fruits. Therefore, elucidating the genetic mechanism of fruit peel colour development may be useful for breeding pomegranate cultivars with enhanced fruit peel colours. In this study, we combined an iTRAQ-based proteome-le...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6098015/ https://www.ncbi.nlm.nih.gov/pubmed/30120285 http://dx.doi.org/10.1038/s41598-018-30088-3 |
Sumario: | Peel colour is an important factor affecting the marketability of pomegranate fruits. Therefore, elucidating the genetic mechanism of fruit peel colour development may be useful for breeding pomegranate cultivars with enhanced fruit peel colours. In this study, we combined an iTRAQ-based proteome-level analysis with an RNA sequencing-based transcriptome-level analysis to detect the proteins and genes related to fruit peel colour development in pomegranate. We analysed the ‘Tunisia’ (red fruit) and ‘White’ (white fruit) pomegranate cultivars at two stages of fruit development. A total of 27 differentially abundant proteins (increased abundance) and 54 differentially expressed genes (16 up-regulated and 38 down-regulated) were identified from our proteomics and transcriptomics data. The identified proteins and genes contribute to pomegranate fruit peel colour by participating in the biosynthesis of anthocyanins, stilbenoids, diarylheptanoids, gingerols, flavonoids, and phenylpropanoids. Several candidate proteins and genes corresponded to enzymes related to general reactions (PAL, 4CL, DFR, LDOX/ANS, CHS, and F3′5′H) and glycosylation (GT1 and UGAT) of compounds and pigments related to the colour of pomegranate fruit peel. Complementary proteome- and transcriptome-level analyses revealed a complex molecular network controlling fruit peel colour. The candidate genes identified in this study may be useful for the marker-based breeding of new pomegranate cultivars. |
---|