Cargando…
Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification
Convolutional neural networks (CNNs) excel in a wide variety of computer vision applications, but their high performance also comes at a high computational cost. Despite efforts to increase efficiency both algorithmically and with specialized hardware, it remains difficult to deploy CNNs in embedded...
Autores principales: | Chang, Julie, Sitzmann, Vincent, Dun, Xiong, Heidrich, Wolfgang, Wetzstein, Gordon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6098044/ https://www.ncbi.nlm.nih.gov/pubmed/30120316 http://dx.doi.org/10.1038/s41598-018-30619-y |
Ejemplares similares
-
Optical Diffractive Convolutional Neural Networks Implemented in an All-Optical Way
por: Yu, Yaze, et al.
Publicado: (2023) -
Encoded diffractive optics for full-spectrum computational imaging
por: Heide, Felix, et al.
Publicado: (2016) -
Classification of crystal structures using electron diffraction patterns with a deep convolutional neural network
por: Ra, Moonsoo, et al.
Publicado: (2021) -
Pulmonary Nodule Detection and Classification Using All-Optical Deep Diffractive Neural Network
por: Shao, Junjie, et al.
Publicado: (2023) -
Realization of optical logic gates using on-chip diffractive optical neural networks
por: Zarei, Sanaz, et al.
Publicado: (2022)