Cargando…

Identifying a Novel Role for Fractalkine (CX3CL1) in Memory CD8(+) T Cell Accumulation in the Omentum of Obesity-Associated Cancer Patients

The omentum is enriched with pro-inflammatory effector memory CD8(+) T cells in patients with the obesity-associated malignancy, esophagogastric adenocarcinoma (EAC) and we have identified the chemokine macrophage inflammatory protein-1alpha as a key player in their active migration to this inflamed...

Descripción completa

Detalles Bibliográficos
Autores principales: Conroy, Melissa J., Maher, Stephen G., Melo, Ashanty M., Doyle, Suzanne L., Foley, Emma, Reynolds, John V., Long, Aideen, Lysaght, Joanne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099201/
https://www.ncbi.nlm.nih.gov/pubmed/30150990
http://dx.doi.org/10.3389/fimmu.2018.01867
Descripción
Sumario:The omentum is enriched with pro-inflammatory effector memory CD8(+) T cells in patients with the obesity-associated malignancy, esophagogastric adenocarcinoma (EAC) and we have identified the chemokine macrophage inflammatory protein-1alpha as a key player in their active migration to this inflamed tissue. More recently, others have established that subsets of memory CD8(+) T cells can be classified based on their surface expression of CX3CR1; the specific receptor for the inflammatory chemokine fractalkine. CD8(+) T cells expressing intermediate levels (CX3CR1(INT)) are defined as peripheral memory, those expressing the highest levels (CX3CR1(HI)) are effector memory/terminally differentiated and those lacking CX3CR1 (CX3CR1(NEG)) are classified as central memory. To date, the fractalkine:CX3CR1 axis has not been examined in the context of CD8(+) T cell enrichment in the omentum and here we examine this chemokines involvement in the accumulation of memory CD8(+) T cells in the omentum of EAC patients. Our data show that fractalkine is significantly enriched in the omentum of EAC patients and drives migration of T cells derived from EAC patient blood. Furthermore, CX3CR1 is endocytosed specifically by CD8(+) T cells upon encountering fractalkine, which is consistent with the significantly diminished frequencies of CX3CR1(INT) and CX3CR1(HI) CD8(+) T cells in the fractalkine-rich environment of omentum in EAC, relative to matched blood. Fractalkine-mediated endocytosis of CX3CR1 by CD8(+) T cells is sustained and is followed by enhanced surface expression of L-selectin (CD62L). These novel data align with our findings that circulating CX3CR1(NEG) CD8(+) T cells express higher levels of L-selectin than CX3CR1(INT) CD8(+) T cells. This is consistent with previous reports and implicates fractalkine in the conversion of CX3CR1(INT) CD8(+) T cells to a CX3CR1(NEG) phenotype characterized by alterations in the migratory capacity of these T cells. For the first time, these findings identify fractalkine as a driver of T cell migration to the omentum in EAC and indicate that CD8(+) T cells undergo sequenced fractalkine-mediated alterations in CX3CR1 and L-selectin expression. These data implicate fractalkine as more than a chemotactic cytokine in obesity-associated meta-inflammation and reveal a role for this chemokine in the maintenance of the CX3CR1(NEG) CD8(+) T cell populations.