Cargando…
Biocatalytic Parallel Interconnected Dynamic Asymmetric Disproportionation of α‐Substituted Aldehydes: Atom‐Efficient Access to Enantiopure (S)‐Profens and Profenols
The biocatalytic asymmetric disproportionation of aldehydes catalyzed by horse liver alcohol dehydrogenase (HLADH) was assessed in detail on a series of racemic 2‐arylpropanals. Statistical optimization by means of design of experiments (DoE) allowed the identification of critical interdependencies...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099231/ https://www.ncbi.nlm.nih.gov/pubmed/30147639 http://dx.doi.org/10.1002/adsc.201800541 |
_version_ | 1783348618518855680 |
---|---|
author | Tassano, Erika Faber, Kurt Hall, Mélanie |
author_facet | Tassano, Erika Faber, Kurt Hall, Mélanie |
author_sort | Tassano, Erika |
collection | PubMed |
description | The biocatalytic asymmetric disproportionation of aldehydes catalyzed by horse liver alcohol dehydrogenase (HLADH) was assessed in detail on a series of racemic 2‐arylpropanals. Statistical optimization by means of design of experiments (DoE) allowed the identification of critical interdependencies between several reaction parameters and revealed a specific experimental window for reaching an ′optimal compromise′ in the reaction outcome. The biocatalytic system could be applied to a variety of 2‐arylpropanals and granted access in a redox‐neutral manner to enantioenriched (S)‐profens and profenols following a parallel interconnected dynamic asymmetric transformation (PIDAT). The reaction can be performed in aqueous buffer at ambient conditions, does not rely on a sacrificial co‐substrate, and requires only catalytic amounts of cofactor and a single enzyme. The high atom‐efficiency was exemplified by the conversion of 75 mM of rac‐2‐phenylpropanal with 0.03 mol% of HLADH in the presence of ∼0.013 eq. of oxidized nicotinamide adenine dinucleotide (NAD(+)), yielding 28.1 mM of (S)‐2‐phenylpropanol in 96% ee and 26.5 mM of (S)‐2‐phenylpropionic acid in 89% ee, in 73% overall conversion. Isolated yield of 62% was obtained on 100 mg‐scale, with intact enantiopurities. [Image: see text] |
format | Online Article Text |
id | pubmed-6099231 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60992312018-08-23 Biocatalytic Parallel Interconnected Dynamic Asymmetric Disproportionation of α‐Substituted Aldehydes: Atom‐Efficient Access to Enantiopure (S)‐Profens and Profenols Tassano, Erika Faber, Kurt Hall, Mélanie Adv Synth Catal Updates The biocatalytic asymmetric disproportionation of aldehydes catalyzed by horse liver alcohol dehydrogenase (HLADH) was assessed in detail on a series of racemic 2‐arylpropanals. Statistical optimization by means of design of experiments (DoE) allowed the identification of critical interdependencies between several reaction parameters and revealed a specific experimental window for reaching an ′optimal compromise′ in the reaction outcome. The biocatalytic system could be applied to a variety of 2‐arylpropanals and granted access in a redox‐neutral manner to enantioenriched (S)‐profens and profenols following a parallel interconnected dynamic asymmetric transformation (PIDAT). The reaction can be performed in aqueous buffer at ambient conditions, does not rely on a sacrificial co‐substrate, and requires only catalytic amounts of cofactor and a single enzyme. The high atom‐efficiency was exemplified by the conversion of 75 mM of rac‐2‐phenylpropanal with 0.03 mol% of HLADH in the presence of ∼0.013 eq. of oxidized nicotinamide adenine dinucleotide (NAD(+)), yielding 28.1 mM of (S)‐2‐phenylpropanol in 96% ee and 26.5 mM of (S)‐2‐phenylpropionic acid in 89% ee, in 73% overall conversion. Isolated yield of 62% was obtained on 100 mg‐scale, with intact enantiopurities. [Image: see text] John Wiley and Sons Inc. 2018-06-12 2018-07-16 /pmc/articles/PMC6099231/ /pubmed/30147639 http://dx.doi.org/10.1002/adsc.201800541 Text en © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Updates Tassano, Erika Faber, Kurt Hall, Mélanie Biocatalytic Parallel Interconnected Dynamic Asymmetric Disproportionation of α‐Substituted Aldehydes: Atom‐Efficient Access to Enantiopure (S)‐Profens and Profenols |
title | Biocatalytic Parallel Interconnected Dynamic Asymmetric Disproportionation of α‐Substituted Aldehydes: Atom‐Efficient Access to Enantiopure (S)‐Profens and Profenols |
title_full | Biocatalytic Parallel Interconnected Dynamic Asymmetric Disproportionation of α‐Substituted Aldehydes: Atom‐Efficient Access to Enantiopure (S)‐Profens and Profenols |
title_fullStr | Biocatalytic Parallel Interconnected Dynamic Asymmetric Disproportionation of α‐Substituted Aldehydes: Atom‐Efficient Access to Enantiopure (S)‐Profens and Profenols |
title_full_unstemmed | Biocatalytic Parallel Interconnected Dynamic Asymmetric Disproportionation of α‐Substituted Aldehydes: Atom‐Efficient Access to Enantiopure (S)‐Profens and Profenols |
title_short | Biocatalytic Parallel Interconnected Dynamic Asymmetric Disproportionation of α‐Substituted Aldehydes: Atom‐Efficient Access to Enantiopure (S)‐Profens and Profenols |
title_sort | biocatalytic parallel interconnected dynamic asymmetric disproportionation of α‐substituted aldehydes: atom‐efficient access to enantiopure (s)‐profens and profenols |
topic | Updates |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099231/ https://www.ncbi.nlm.nih.gov/pubmed/30147639 http://dx.doi.org/10.1002/adsc.201800541 |
work_keys_str_mv | AT tassanoerika biocatalyticparallelinterconnecteddynamicasymmetricdisproportionationofasubstitutedaldehydesatomefficientaccesstoenantiopuresprofensandprofenols AT faberkurt biocatalyticparallelinterconnecteddynamicasymmetricdisproportionationofasubstitutedaldehydesatomefficientaccesstoenantiopuresprofensandprofenols AT hallmelanie biocatalyticparallelinterconnecteddynamicasymmetricdisproportionationofasubstitutedaldehydesatomefficientaccesstoenantiopuresprofensandprofenols |