Cargando…
Human–Computer Interaction in Face Matching
Automatic facial recognition is becoming increasingly ubiquitous in security contexts such as passport control. Currently, Automated Border Crossing (ABC) systems in the United Kingdom (UK) and the European Union (EU) require supervision from a human operator who validates correct identity judgments...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099365/ https://www.ncbi.nlm.nih.gov/pubmed/29954047 http://dx.doi.org/10.1111/cogs.12633 |
Sumario: | Automatic facial recognition is becoming increasingly ubiquitous in security contexts such as passport control. Currently, Automated Border Crossing (ABC) systems in the United Kingdom (UK) and the European Union (EU) require supervision from a human operator who validates correct identity judgments and overrules incorrect decisions. As the accuracy of this human–computer interaction remains unknown, this research investigated how human validation is impacted by a priori face‐matching decisions such as those made by automated face recognition software. Observers matched pairs of faces that were already labeled onscreen as depicting the same identity or two different identities. The majority of these labels provided information that was consistent with the stimuli presented, but some were also inconsistent or provided “unresolved” information. Across three experiments, accuracy consistently deteriorated on trials that were inconsistently labeled, indicating that observers’ face‐matching decisions are biased by external information such as that provided by ABCs. |
---|