Cargando…

Selective and mild fractionation of microalgal proteins and pigments using aqueous two‐phase systems

BACKGROUND: Microalgal biomass is generally used to produce a single product instead of valorizing all of the cellular components. The biomass production and downstream processes are too expensive if only one product is valorized. A new approach was proposed for the simultaneous and selective partit...

Descripción completa

Detalles Bibliográficos
Autores principales: Suarez Ruiz, Catalina A, Emmery, Daniel P, Wijffels, Rene H, Eppink, Michel HM, van den Berg, Corjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099415/
https://www.ncbi.nlm.nih.gov/pubmed/30147214
http://dx.doi.org/10.1002/jctb.5711
Descripción
Sumario:BACKGROUND: Microalgal biomass is generally used to produce a single product instead of valorizing all of the cellular components. The biomass production and downstream processes are too expensive if only one product is valorized. A new approach was proposed for the simultaneous and selective partitioning of pigments and proteins from disrupted Neochloris oleoabundans cultivated under saline and freshwater conditions. RESULTS: An aqueous two‐phase system composed of polyethylene glycol and cholinium dihydrogen phosphate selectively separated microalgal pigments from microalgal proteins. 97.3 ± 1.0% of lutein and 51.6 ± 2.3% of chlorophyll were recovered in the polymer‐rich phase. Simultaneously, up to 92.2 ± 2.0% of proteins were recovered in a third phase (interface) in between the aqueous phases (interface). The recovered proteins, including Rubisco with a molecular weight of ∼560 kDa, seem to be intact and pigments did not suffer degradation, demonstrating the mildness of this system for fractionating microalgal biomolecules. CONCLUSION: The ability of aqueous two‐phase systems (ATPSs) to simultaneously and efficiently fractionate different biomolecules in a mild manner from disrupted microalgae is demonstrated. This is an important step towards the development of a multiproduct microalgae biorefinery. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.