Cargando…

Identification and Expression of miRNAs Related to Female Flower Induction in Walnut (Juglans regia L.)

Flower induction is an essential stage in walnut (Juglans regia L.) trees, directly affecting yield, yield stability, fruit quality and commodity value. The objective of this study was to identify miRNAs related to female flower induction via high-throughput sequencing and bioinformatics analysis. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Li, Quan, Shaowen, Xu, Hang, Ma, Li, Niu, Jianxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099546/
https://www.ncbi.nlm.nih.gov/pubmed/29772800
http://dx.doi.org/10.3390/molecules23051202
Descripción
Sumario:Flower induction is an essential stage in walnut (Juglans regia L.) trees, directly affecting yield, yield stability, fruit quality and commodity value. The objective of this study was to identify miRNAs related to female flower induction via high-throughput sequencing and bioinformatics analysis. A total of 123 miRNAs were identified including 51 known miRNAs and 72 novel miRNAs. Differential expression was observed in 19 of the known miRNAs and 34 of the novel miRNAs. Twelve miRNAs were confirmed by RT-qPCR. A total of 1339 target genes were predicted for the differentially expressed miRNAs. The functions of 616 of those target genes had been previously annotated. The target genes of the differentially expressed miRNAs included: (i) floral homeotic protein APETALA 2 (AP2) and ethylene-responsive transcription factor RAP2-7 which were targeted by jre-miRn69; (ii) squamosa promoter-binding protein 1 (SPB1) and various SPLs (squamosa promoter-binding-like protein) which were targeted by jre-miR157a-5p; (iii) various hormone response factors which were targeted by jre-miR160a-5p (ARF18) and jre-miR167a-5p (ARF8) and (iv) transcription factor SCL6 which was targeted by jre-miR171b-3p, jre-miRn46 and jre-miRn49. The KEGG pathway analysis of the target genes indicated that the differentially expressed miRNAs were mainly enriched to ubiquitin mediated proteolysis, RNA degradation and various carbohydrate metabolism pathways. Many miRNAs were detected in J. regia during female flower induction. Some miRNAs (jre-miR157a-5p, jre-miR160a-5p, jre-miR167a-5p, miR171b-3p jre-miRn69 and jre-miRn49) were involved in female flower induction. The results of this experiment will contribute valuable information for further research about the function of miRNAs in flower induction of J. regia and other fruit trees.