Cargando…
ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers
A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address...
Autores principales: | Xing, Yuting, Wu, Chengkun, Yang, Xi, Wang, Wei, Zhu, En, Yin, Jianping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099625/ https://www.ncbi.nlm.nih.gov/pubmed/29702574 http://dx.doi.org/10.3390/molecules23051028 |
Ejemplares similares
-
An Interface for Biomedical Big Data Processing on the Tianhe-2 Supercomputer
por: Yang, Xi, et al.
Publicado: (2017) -
SparkText: Biomedical Text Mining on Big Data Framework
por: Ye, Zhan, et al.
Publicado: (2016) -
Parallel processing for supercomputers and artificial intelligence /
Publicado: (1989) -
Biomedical Text Mining and Its Applications
por: Rodriguez-Esteban, Raul
Publicado: (2009) -
SimText: a text mining framework for interactive analysis and visualization of similarities among biomedical entities
por: Macnee, Marie, et al.
Publicado: (2021)