Cargando…
Antifungal Activity of an Abundant Thaumatin-Like Protein from Banana against Penicillium expansum, and Its Possible Mechanisms of Action
Thaumatin-like protein from banana (designated BanTLP) has been purified by employing a simple protocol consisting of diethylaminoethyl Sephadex (DEAE–Sephadex) chromatography, gel filtration on Sephadex G50, and reversed-phase chromatography. The purified protein was identified by MALDI-TOF mass sp...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099679/ https://www.ncbi.nlm.nih.gov/pubmed/29899211 http://dx.doi.org/10.3390/molecules23061442 |
Sumario: | Thaumatin-like protein from banana (designated BanTLP) has been purified by employing a simple protocol consisting of diethylaminoethyl Sephadex (DEAE–Sephadex) chromatography, gel filtration on Sephadex G50, and reversed-phase chromatography. The purified protein was identified by MALDI-TOF mass spectrometry, with an estimated molecular weight of 22.1 kDa. BanTLP effectively inhibited in vitro spore germination of Penicillium expansum, one of the main postharvest pathogens in fruits. This study further investigated the antifungal properties and underlying mechanisms of BanTLP against P. expansum. Results demonstrated that BanTLP exhibited antifungal activity in a wide pH range (4.0–10.0) at 20–50 °C. Propidium iodide (PI) influx and potassium release confirmed that BanTLP induced membrane disruption of the test pathogen, increasing the membrane permeability and disintegration of the cell. This led to cell death, as evidenced by the assays of thiobarbituric acid-reactive species (TBARS) content, the production of reactive oxygen species (ROS), and 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence integrity. Ultrastructural alterations in P. expansum conidia after BanTLP treatment revealed severe damage to the cell wall. These results suggest that BanTLP purified from banana exerts antifungal activity against P. expansum by inducing plasma membrane disturbance and cell wall disorganization. |
---|