Cargando…
Detecting Differential Transcription Factor Activity from ATAC-Seq Data
Transcription factors are managers of the cellular factory, and key components to many diseases. Many non-coding single nucleotide polymorphisms affect transcription factors, either by directly altering the protein or its functional activity at individual binding sites. Here we first briefly summari...
Autores principales: | Tripodi, Ignacio J., Allen, Mary A., Dowell, Robin D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099720/ https://www.ncbi.nlm.nih.gov/pubmed/29748466 http://dx.doi.org/10.3390/molecules23051136 |
Ejemplares similares
-
Combining signal and sequence to detect RNA polymerase initiation in ATAC-seq data
por: Tripodi, Ignacio J., et al.
Publicado: (2020) -
Comprehensive analysis of single cell ATAC-seq data with SnapATAC
por: Fang, Rongxin, et al.
Publicado: (2021) -
Differential ATAC-seq and ChIP-seq peak detection using ROTS
por: Faux, Thomas, et al.
Publicado: (2021) -
Identification of transcription factor binding sites using ATAC-seq
por: Li, Zhijian, et al.
Publicado: (2019) -
maxATAC: Genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks
por: Cazares, Tareian A., et al.
Publicado: (2023)