Cargando…
Fingerprint-Based Machine Learning Approach to Identify Potent and Selective 5-HT(2B)R Ligands
The identification of subtype-selective GPCR (G-protein coupled receptor) ligands is a challenging task. In this study, we developed a computational protocol to find compounds with 5-HT(2B)R versus 5-HT(1B)R selectivity. Our approach employs the hierarchical combination of machine learning methods,...
Autores principales: | Rataj, Krzysztof, Kelemen, Ádám Andor, Brea, José, Loza, María Isabel, Bojarski, Andrzej J., Keserű, György Miklós |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100008/ https://www.ncbi.nlm.nih.gov/pubmed/29748476 http://dx.doi.org/10.3390/molecules23051137 |
Ejemplares similares
-
Spiro[pyrrolidine-3,3′-oxindoles] and Their Indoline Analogues as New 5-HT6 Receptor Chemotypes
por: Kelemen, Ádám A., et al.
Publicado: (2017) -
Substructural Connectivity Fingerprint and Extreme Entropy Machines—A New Method of Compound Representation and Analysis
por: Rataj, Krzysztof, et al.
Publicado: (2018) -
The importance of template choice in homology modeling. A 5-HT(6)R case study
por: Rataj, Krzysztof, et al.
Publicado: (2013) -
An Algorithm to Identify Target-Selective Ligands – A Case Study of 5-HT7/5-HT1A Receptor Selectivity
por: Kurczab, Rafał, et al.
Publicado: (2016) -
The influence of hashed fingerprints density on the machine learning methods performance
por: Smusz, Sabina, et al.
Publicado: (2013)