Cargando…

Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells

Hydrogenases (H(2)ases) are benchmark electrocatalysts for H(2) production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H(2)ase through the introduction of a hierarchical inverse opal (IO) TiO(2) interlayer. Thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Nam, Dong Heon, Zhang, Jenny Z., Andrei, Virgil, Kornienko, Nikolay, Heidary, Nina, Wagner, Andreas, Nakanishi, Kenichi, Sokol, Katarzyna P., Slater, Barnaby, Zebger, Ingo, Hofmann, Stephan, Fontecilla‐Camps, Juan C., Park, Chan Beum, Reisner, Erwin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100105/
https://www.ncbi.nlm.nih.gov/pubmed/29888857
http://dx.doi.org/10.1002/anie.201805027
Descripción
Sumario:Hydrogenases (H(2)ases) are benchmark electrocatalysts for H(2) production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H(2)ase through the introduction of a hierarchical inverse opal (IO) TiO(2) interlayer. This proton‐reducing Si|IO‐TiO(2)|H(2)ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias‐free) water splitting by wiring Si|IO‐TiO(2)|H(2)ase to a modified BiVO(4) photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO‐TiO(2)|H(2)ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z‐scheme that replaces the non‐complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode.