Cargando…

Synthesis, Structure, Chemical Stability, and In Vitro Cytotoxic Properties of Novel Quinoline-3-Carbaldehyde Hydrazones Bearing a 1,2,4-Triazole or Benzotriazole Moiety

A small library of novel quinoline-3-carbaldehyde hydrazones (Series 1), acylhydrazones (Series 2), and arylsulfonylhydrazones (Series 3) bearing either a 1,2,4-triazole or benzotriazole ring at position 2 was prepared, characterized by elemental analyses and IR, NMR, and MS spectra, and then subjec...

Descripción completa

Detalles Bibliográficos
Autores principales: Korcz, Martyna, Sączewski, Franciszek, Bednarski, Patrick J., Kornicka, Anita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100353/
https://www.ncbi.nlm.nih.gov/pubmed/29925826
http://dx.doi.org/10.3390/molecules23061497
Descripción
Sumario:A small library of novel quinoline-3-carbaldehyde hydrazones (Series 1), acylhydrazones (Series 2), and arylsulfonylhydrazones (Series 3) bearing either a 1,2,4-triazole or benzotriazole ring at position 2 was prepared, characterized by elemental analyses and IR, NMR, and MS spectra, and then subjected to in vitro cytotoxicity studies on three human tumor cell lines: DAN-G, LCLC-103H, and SISO. In general, compounds 4, 6, and 8 substituted with a 1,2,4-triazole ring proved to be inactive, whereas the benzotriazole-containing quinolines 5, 7, and 9 elicited pronounced cancer cell growth inhibitory effects with IC(50) values in the range of 1.23–7.39 µM. The most potent 2-(1H-benzotriazol-1-yl)-3-[2-(pyridin-2-yl)hydrazonomethyl]quinoline (5e) showed a cytostatic effect on the cancer cell lines, whereas N′-[(2-(1H-benzotriazol-1-yl)quinolin-3-yl)methylene]-benzohydrazide (7a) and N′-[(2-1H-benzotriazol-1-yl)quinolin-3-yl)methylene]-naphthalene-2-sulfonohydrazide (9h) exhibited selective activity against the pancreas cancer DAN-G and cervical cancer SISO cell lines. Based on the determined IC(50) values, the compound 5e seems to be leading compound for further development as anticancer agent.