Cargando…
Substructural Connectivity Fingerprint and Extreme Entropy Machines—A New Method of Compound Representation and Analysis
Key-based substructural fingerprints are an important element of computer-aided drug design techniques. The usefulness of the fingerprints in filtering compound databases is invaluable, as they allow for the quick rejection of molecules with a low probability of being active. However, this method is...
Autores principales: | Rataj, Krzysztof, Czarnecki, Wojciech, Podlewska, Sabina, Pocha, Agnieszka, Bojarski, Andrzej J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100401/ https://www.ncbi.nlm.nih.gov/pubmed/29789513 http://dx.doi.org/10.3390/molecules23061242 |
Ejemplares similares
-
Extremely Randomized Machine Learning Methods for Compound Activity Prediction
por: Czarnecki, Wojciech M., et al.
Publicado: (2015) -
Robust optimization of SVM hyperparameters in the classification of bioactive compounds
por: Czarnecki, Wojciech M, et al.
Publicado: (2015) -
Fingerprint-Based Machine Learning Approach to Identify Potent and Selective 5-HT(2B)R Ligands
por: Rataj, Krzysztof, et al.
Publicado: (2018) -
The influence of hashed fingerprints density on the machine learning methods performance
por: Smusz, Sabina, et al.
Publicado: (2013) -
Multiple conformational states in retrospective virtual screening – homology models vs. crystal structures: beta-2 adrenergic receptor case study
por: Mordalski, Stefan, et al.
Publicado: (2015)