Cargando…

General Method for the Synthesis of (−)-Conduritol C and Analogs from Chiral Cyclohexadienediol Scaffolds

An efficient and facile general method for the synthesis of conduritol C analogs, taking advantage of an enantioselective biocatalysis process of monosubstituted benzenes, is described. The absolute stereochemical patterns of the target molecules (−)-conduritol C, (−)-bromo-conduritol C, and (−)-met...

Descripción completa

Detalles Bibliográficos
Autores principales: Tibhe, Gaurao D., Macías, Mario A., Schapiro, Valeria, Suescun, Leopoldo, Pandolfi, Enrique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100410/
https://www.ncbi.nlm.nih.gov/pubmed/29986401
http://dx.doi.org/10.3390/molecules23071653
Descripción
Sumario:An efficient and facile general method for the synthesis of conduritol C analogs, taking advantage of an enantioselective biocatalysis process of monosubstituted benzenes, is described. The absolute stereochemical patterns of the target molecules (−)-conduritol C, (−)-bromo-conduritol C, and (−)-methyl-conduritol C were achieved by means of chemoenzymatic methods. The stereochemistry present at the homochiral cyclohexadiene-cis-1,2-diols derived from the arene biotransformation and the enantioselective ring opening of a non-isolated vinylepoxide derivative permitted the absolute configuration of the carbon bearing the hydroxyl groups at the target molecules to be established. All three conduritols and two intermediates were crystallized, and their structures were confirmed by X-ray diffraction. The three conduritols and intermediates were isostructural. The versatility of our methodology is noteworthy to expand the preparation of conduritol C analogs starting from toluene dioxygenase (TDO) monosubstituted arene substrates.