Cargando…
Predicting electronic structure properties of transition metal complexes with neural networks
High-throughput computational screening has emerged as a critical component of materials discovery. Direct density functional theory (DFT) simulation of inorganic materials and molecular transition metal complexes is often used to describe subtle trends in inorganic bonding and spin-state ordering,...
Autores principales: | Janet, Jon Paul, Kulik, Heather J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100542/ https://www.ncbi.nlm.nih.gov/pubmed/30155224 http://dx.doi.org/10.1039/c7sc01247k |
Ejemplares similares
-
Accurate Multiobjective Design in a Space of Millions
of Transition Metal Complexes with Neural-Network-Driven Efficient
Global Optimization
por: Janet, Jon Paul, et al.
Publicado: (2020) -
A quantitative uncertainty metric controls error in neural network-driven chemical discovery
por: Janet, Jon Paul, et al.
Publicado: (2019) -
Electronic structure, polaron formation, and functional properties in transition-metal tungstates
por: Hoang, Khang, et al.
Publicado: (2018) -
Electron configuration-based neural network model to predict physicochemical properties of inorganic compounds
por: Shin, Hyun Kil
Publicado: (2020) -
Structural distortion by alkali metal cations modulates the redox and electronic properties of Ce(3+) imidophosphorane complexes
por: Boggiano, Andrew C., et al.
Publicado: (2023)